Skip to main content
Log in

Gene Expression of the Antimicrobial Peptide Bombinin Increases the Resistance of Transgenic Tobacco Plants to Phytopathogens

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Transgenic tobacco (Nicotiana tabacum L.) plants with an artificial gene from the antimicrobial peptide bombinin (bom) have been obtained and studied. The presence of the bom gene in the genome of kanamycin-resistant plants was shown by PCR. Expression of the bom gene was confirmed by antimicrobial activity measurements in leaf extracts. The obtained plants were morphogenetically resistant to Erwinia carotovora bacteria and Rhizoctonia solani fungi phytopathogens. In addition, the protective oxidative reaction to the infection, i.e., the SOD activity and proline content, were lower in transgenic plants than in the infected nontransgenic plants. Plants with the expression of the antimicrobial bombinin peptide gene are promising for use in agricultural biotechnology as plant protectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Boman, H., Peptide antibiotics and their role in innate immunity, Annu. Rev. Immunol., 1995, vol. 13, pp. 61–92. doi 10.1146/annurev.iy.13.040195.000425

    Article  CAS  PubMed  Google Scholar 

  2. Motesinos, E., Antimicrobial peptides and plant disease control, FEMS Microbiol. Lett., 2007, vol. 270, pp. 1–11. doi 10.1111/j.1574-6968.2007.00683.x

    Article  CAS  Google Scholar 

  3. Hyltmark, D., Enqstrom, A., Bennich, H., et al., Insect immunity: isolation and structure of cecropin d and four minor antibacterial components from Cecropia pupae, Eur. J. Biochem., 1982, vol. 127, pp. 207–217. doi 10.1111/j.1432-1033.1982.tb06857.x

    Article  Google Scholar 

  4. Mills, D. and Hammerschlag, F.A., Effect of cecropin B on peach pathogen, protoplasts, and cells, Plant Sci., 1993, vol. 93, pp. 143–150. doi 10.1016/0168-9452(93)90043-Y

    Article  CAS  Google Scholar 

  5. Rukavtsova, E.B., Bur’yanov, Ya.I., Shul’ga, N.Ya., and Bykov, V.A., Transgenic plants for pharmacology, Vopr. Biol. Med. Farm. Khim., 2006, no. 2, pp. 3–12.

  6. Russel, C. and Clarke, L., Recombinant proteins for genetic disease, Clin. Genet., 1999, vol. 55, pp. 389–394.

    Article  Google Scholar 

  7. Martemyanov, K.A., Spirin, A.S., and Gudkov, A.T., Synthesis, cloning and expression of genes for antibacterial peptides: cecropin, magainin, and bombinin, Biotechnol. Lett., 1996, vol. 18, pp. 1357–1362. doi 10.1007/BF00129335

    Article  CAS  Google Scholar 

  8. Simmaco, M., Barra, D., Chiarini, F., et al., A family of bombinin-related peptides from the skin of Bombina variegate, Eur. J. Biochem., 1991, vol. 199, pp. 217–222. doi 10.1111/j.1432-1033.1991.tb16112.x

    Article  CAS  PubMed  Google Scholar 

  9. Zakharchenko, N.S., Loktyushov, E.V., Rukavtsova, E.B., et al., Obtaining transgenic plants expressing the antimicrobial peptide bombinin gene, Izv. Tul’sk. Gos. Univ.,Ser.: Estestv. Nauki, 2013, no. 3, pp. 287–297.

  10. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco cultures, Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–497. doi 10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  11. Dye, D.M., A taxonomic study of the genus Erwinia the “Carotovora” group, N. Z. J. Sci., 1969, vol. 12, pp. 81–97.

    Google Scholar 

  12. Sambrook, J., Fritsch, E.E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: CSHL Press, 1989, pp. 4–1626.

    Google Scholar 

  13. Naumov, N.A., Metody mikologicheskikh i fitopatologicheskikh issledovanii (Methods of Mycological and Phytopathological Research), Leningrad: Sel’khozizdat, 1937, pp. 2–272.

  14. Edwards, K., Johnstone, C., and Thompson, C., A simple and rapid method for the preparation of plant genomic DNA for PCR analysis, Nucleic Acids Res., 1991, vol. 19, p. 1349. doi 10.1093/nar/19.6.1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Draper, J., Scott, R., and Hamil, J., Transformation of dicotyledonous plant cells using the Ti plasmid of Agrobacterium tumefaciens and the Ri plasmid of A. rhizogenes, in Plant Genetic Transformation and Gene Expression. A Laboratory Manual, Draper, J., Scott, R., Armitage, P., and Walden, R., Eds., Oxford: Blackwell, 1988, pp. 69–160.

    Google Scholar 

  16. Ohshima, M., Mitruhara, I., Okamoto, M., et al., Enhanced resistance to bacterial diseases of transgenic tobacco plants overexpressing sarcotoxin IA, a bactericidal peptide of insect, J. Biochem., 1999, vol. 125, pp. 431–435. doi 10.1093/oxfordjournals.jbchem.a022304

    Article  CAS  PubMed  Google Scholar 

  17. Bradford, M.M., A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254. doi 10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  18. Beauchamp, C.O. and Fridovich, I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, pp. 276–287. doi 10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  19. Uchiyama, M. and Mihara, M., Determination of malonaldehyde precursor in tissue by thiobarbituric acid test, Anal. Biochem., 1978, vol. 86, pp. 287–297. doi 10.1016/0003-2697(78)90342-1

    Article  Google Scholar 

  20. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1977, vol. 39, no. 1, pp. 205–207. doi 10.1007/BF00018060

    Article  Google Scholar 

  21. Revenkova, E.V., Kraev, A.S., and Skryabin, K.G., Construction of disarmed derivative of the supervirulent Ti plasmid oTiBo542, in Plant Biotechnology and Molecular Biology, Skryabin, K.G., Ed., Moscow: Pushchino Research Center, 1993, pp. 67–76.

    Google Scholar 

  22. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410. doi 10.1016/S1360-1385(02)02312-9

    Article  CAS  PubMed  Google Scholar 

  23. Mandal, S., Mitra, A., and Mallick, N., Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici, Physiol. Mol. Plant Pathol., 2008, vol. 72, pp. 56–61. doi 10.1016/j.pmpp.2008.04.002

    Article  CAS  Google Scholar 

  24. Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M., Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, J. Bot., 2012, vol. 4, pp. 1–26. doi 10.1155/ 2012/217037

    Google Scholar 

  25. Viljevac, M., Dugalic, K., Stolfa, I., et al., Biochemical basis of apple leaf resistance to Erwinia amylovora infection, Food Technol. Biotechnol., 2009, vol. 47, no. 3, pp. 281–287. oai:hrcak.srce.hr:39845

  26. Kim, M.S., Kim, H.S., Kim, K.H., et al., Expression of lily chloroplastic Cu, Zn superoxide dismutase enhances resistance to Erwinia carotovora in potatoes, J. Plant Pathol., 2007, vol. 23, no. 4, pp. 300–307. doi 10.5423/PPJ.2007.23.4.300

    Article  Google Scholar 

  27. Kuznetsov, V.V. and Shevyakova, N.I., Proline under stress: biological role, metabolism, and regulation, Russ. J. Plant Physiol., 1999, vol. 46, no. 2, pp. 274–288.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was financially supported by the Russian Fund for Basic Research, project nos. 15-08-02050 and 16-04-00623.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Zakharchenko.

Additional information

Translated by V. Mittova

Abbreviations: AMPs—antimicrobial peptides; ROS—reactive oxygen species; BSA—bovine serum albumin; PGA—potato glucose agar; MDA—malonic dialdehyde; PAAG—polyacrylamide gel; bp—base pair; POL—peroxide oxidation of lipids; PCR—polymerase chain reaction; SOD—superoxide dismutase; bom—bombinin gene; dNTP—deoxynucleoside triphosphate (s); 35S—35S promoter of cauliflower mosaic virus; SDS—sodium dodecyl sulfate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharchenko, N.S., Pigoleva, S.V., Furs, O.V. et al. Gene Expression of the Antimicrobial Peptide Bombinin Increases the Resistance of Transgenic Tobacco Plants to Phytopathogens. Appl Biochem Microbiol 54, 730–735 (2018). https://doi.org/10.1134/S0003683818070086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818070086

Keywords:

Navigation