Skip to main content
Log in

Optimization of the Process of Air Purification from Dichloromethane in a Biofilter with an Irrigated Layer by Mathematical Modeling

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Methods for design of biocatalysts based on modeling and subsequent experimental verification of the model allow maximal use of the destructive potential of a consortia of microorganisms to optimize the functioning of biological filters used in the purification of gas-air emissions of industrial enterprises from volatile halogenated compounds such as dichloromethane. For an increase in the duration and efficiency of biofilters’ operation a systematic approach using methods of system biology and computer mathematical modeling is proposed. The application of this approach allowed us to consider complex regulatory interactions and the entire spectrum of metabolic features of the biological system. Simulation of the air purification process made it possible to select effective regimes in which the conversion of dichloromethane reached 90% at an inlet concentration of 100 mg/m3 and 50–60% at an inlet concentration up to 500 mg/m3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Osterman-Golkar, S., Hussain, S., Walles, S., Anderstam, B., and Sigvardsson, K., Chem. Biol. Interact., 1983, vol. 46, no. 1, pp. 121–130.

    Article  CAS  PubMed  Google Scholar 

  2. Dhillon, S. and Von Burg, R.J., Appl. Toxicol., 1995, vol. 15, no. 4, pp. 329–335.

    Article  CAS  Google Scholar 

  3. Line, D.E., Wu, J., Arnold, J.A., Jennings, G.D., and Rubin, A.R., Water Environ. Res., 1997, vol. 69, no. 3, pp. 305–310.

    Article  CAS  Google Scholar 

  4. Butler, J.H., Nature, 2000, vol. 403, no. 6767, pp. 260–261.

    Article  CAS  PubMed  Google Scholar 

  5. Andreae, M.O., Atlas, E., Harris, G.W., de Kock, A., Koppmann, R., Maenhaut, W., Mano, S., Pollock, W.H., Rudolph, J., Scharffe, D., Schebeske, G., and Welling, M., J. Geophys. Res., 1996, vol. 101, no. D19, pp. 23603–23613.

    Article  CAS  Google Scholar 

  6. Keene, W.C., Khalil, M.A.K., Erikson, IIID.J., McCulloch, A., Graedel, T.E., Lobert, J.M., Aucott, M.L., Gong, S.L., Harper, D.B., Kleiman, G., Midgley, P., Moore, R.M., Seuzaret, C., Sturges, W.T., Benkovitz, C.M., Koropalov, V., Barrie, L.A., and Li, Y.-F., J. Geophys. Res., 1999, vol. 104, no. D7, pp. 8429–8440.

    Article  CAS  Google Scholar 

  7. Harper, D.B., Nat. Prod. Rep., 2000, vol. 17, pp. 337–348.

    Article  CAS  PubMed  Google Scholar 

  8. Green, T., Hum. Exp. Toxicol., 1997, vol. 16, no. 1, pp. 3–13.

    Article  CAS  PubMed  Google Scholar 

  9. Thier, R., Wiebel, F.A., Hinkel, A., Burger, A., Bruning, T., Morgenroth, K., Senge, T., Wilhelm, M., and Schulz, T.G., Arch. Toxicol., 1998, vol. 72, no. 10, pp. 622–629.

    Article  CAS  PubMed  Google Scholar 

  10. Starr, T.B., Matanoski, G., Anders, M.W., and Andersen, M.E., Toxicol. Sci., 2006, vol. 91, no. 1, pp. 20–28.

    Article  CAS  PubMed  Google Scholar 

  11. Iranpour, R., Cox, H.H.J., Deshusses, M.A., and Schroeder, E.D., Environ. Prog., 2005, vol. 24, no. 3, pp. 254–267.

    Article  CAS  Google Scholar 

  12. Diks, R.M.M., Ottengraf, S.P.P., and Oever, A.H.C., Biodegradation, 1994, vol. 5, pp. 129–141.

    Article  CAS  Google Scholar 

  13. Herbst, B. and Wiesmann, U., Water Res., 1996, vol. 30, no. 5, pp. 1069–1076.

    Article  CAS  Google Scholar 

  14. Flanagan, W.P., Water Environ. Res., 1998, vol. 70, no. 1, pp. 60–66.

    Article  CAS  Google Scholar 

  15. Leisinger, T., Bader, R., Hermann, R., Schmid-Appert, M., and Vuilleumier, S., Biodegradation, 1994, vol. 5, nos. 3–4, pp. 237–248.

    Article  CAS  PubMed  Google Scholar 

  16. Okkerse, W.J.H., Ottengraf, S.P.P., Osinga-Kuipers, B., and Okkerse, M., Biotechnol. Bioeng., 1999, vol. 63, no. 4, pp. 418–430.

    Article  CAS  PubMed  Google Scholar 

  17. Yu, J., Chen, J., and Wang, J., J. Environ. Sci., 2006, vol. 18, no. 6, pp. 1073–1076.

    Article  CAS  Google Scholar 

  18. Bailon, L., Nikolausz, M., Kaestner, M., Veiga, M.C., and Kennes, C., Water Res., 2009, vol. 43, pp. 11–20.

    Article  CAS  PubMed  Google Scholar 

  19. Abtahi, M., Naddafi, K., Mesdaghinia, A., Yaghmaeian, K., Nabizadeh, R., Jaafarzadeh, N., Rastkari, N., Nazmara, S., and Saeedi, R., J. Environ. Health Sci. Eng., 2014, vol. 12, no. 1, p. 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beschkov, V., Sapundzhiev, Ts., Torz, M., Wietzes, P., and Janssen, D.B., Chem. Biochem. Eng. Quart., 2008, vol. 22, no. 3, pp. P. 339–348.

  21. Wu, S., Yu, X., Hu, Z., Zhang, L., and Chen, J., J. Environ. Sci., 2009, vol. 21, no. 9, pp. 1276–1283.

    Article  CAS  Google Scholar 

  22. Yaghmaei, S. and Rashidkhanil, A., Scientia Iranica, 2005, vol. 12, no. 3, pp. 300–305.

    CAS  Google Scholar 

  23. Doronina, N.V., Trotsenko, Y.A., Tourova, T.P., Kuznetsov, B.B., and Leisinger, T., Syst. Appl. Microbiol., 2000, vol. 23, no. 2, pp. 210–218.

    Article  CAS  PubMed  Google Scholar 

  24. Firsova, Yu.E., Torgonskaya, M.L., Doronina, N.V., and Trotsenko, Yu.A., Appl. Biochemm. Microbiol., 2005, vol. 41, no. 5, pp. 480–485.

    Article  CAS  Google Scholar 

  25. Torgonskaya, M.L., Doronina, N.V., Hourcade, E., Trotsenko, Y.A., and Vuilleumier, S., J. Basic Microbiol., 2011, vol. 51, no. 3, pp. 296–303.

    Article  CAS  PubMed  Google Scholar 

  26. Joerg, G. and Bertau, M., Anal. Biochem., 2004, vol. 328, pp. 22–28.

    Article  CAS  Google Scholar 

  27. Stucki, G., Gaelli, R., Ebersold, H.R., and Leisinger, T., Arch. Microbiol., 1981, vol. 130, no. 5, pp. 366–371.

    Article  CAS  Google Scholar 

  28. CRC Handbook of Chemistry and Physics, Lide, D.R., Ed., CRC Press, 1993, 74th ed.

    Google Scholar 

  29. US Environmental Protection Agency Data. https:// www3.epa.gov/ceampubl/learn2model/part-two/onsite/ esthenry.html.

  30. Scholtz, R., Wackett, L.P., Egli, C., Cook, A.M., and Leisinger, T., J. Bacteriol., 1988, vol. 170, no. 12, pp. 5698–5704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vuilleumier, S., Ivos, N., Dean, M., and Leisinger, T., Microbiology, 2001, vol. 147, no. 3, pp. 611–619.

    Article  CAS  PubMed  Google Scholar 

  32. Marsh, A. and Ferguson, D.M., Proteins: Struct., Funct., Genet., 1997, vol. 28, no. 2, pp. 217–226.

    Article  CAS  Google Scholar 

  33. Cornish-Bowden, A., Fundamentals of Enzyme Kinetics, London, U.K.: Portland Press, 1995.

    Google Scholar 

  34. Booth, I.R., Microbiol. Rev., 1985, vol. 49, no. 4, pp. 359–378.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Zagustina.

Additional information

Translated by P. Kuchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, S.V., Demin, O.V., Torgonskaya, M.L. et al. Optimization of the Process of Air Purification from Dichloromethane in a Biofilter with an Irrigated Layer by Mathematical Modeling. Appl Biochem Microbiol 54, 702–711 (2018). https://doi.org/10.1134/S0003683818060121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818060121

Keywords:

Navigation