Characterization of Bacterial Cellulose Produced using Media Containing Waste Apple Juice

Abstract

The present study involves bacterial cellulose (BC) production using freshly prepared apple juice medium (AJM) and the bacterial strain Gluconobacter xylinum CCM 3611T. The AJM was modified with ammonium sulfate, dipotassium phosphate, sucrose, acetic acid, with and without ethanol. BC sheets (in the dry state) were analyzed on the basis of morphological, rheological and structural properties, thermal stability, water holding capacity (WHC) and water absorption capacity (WAC). Comparative X-ray diffractograms of BC using cobalt radiation is observed for the first time. The WAC analysis revealed that lyophilized BC samples had the higher WAC than the oven air-dried samples. There is an evidential structural difference observed in BC prepared from different AJM. Moreover, the AJM modified with only ethanol, exhibited quite a significant yield of BC. BC produced from the medium without ethanol had the highest thermal stability, viscoelasticity, and WHC.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Römling, U., Res. Microbiol., 2002, vol. 153, no. 4, pp. 205–212.

    Article  PubMed  Google Scholar 

  2. 2

    Lin, S.-P., Calvar, I.L., Catchmark, J.M., Liu, J.-R., Demirci, A., and Cheng, K.-C., Cellulose, 2013, vol. 20, no. 5, pp. 2191–2219.

    Article  CAS  Google Scholar 

  3. 3

    Bielecki, S., Krystynowicz, A., Turkiewicz, M., and Kalinowska, H., Biopolymers Online, New York: John Wiley and Sons, Hoboken, 2005.

    Google Scholar 

  4. 4

    Hestrin, S. and Schramm, M., Biochem. J., 1954, vol. 58, no. 2, pp. 345–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Kurosumi, A., Sasaki, C., Yamashita, Y., and Nakamura, Y., Carbohydr. Polym., 2009, vol. 76, no. 2, pp. 333–335.

    Article  CAS  Google Scholar 

  6. 6

    Hungund, B.S. and Gupta, S.G., World J. Microbiol. Biotechnol., 2010, vol. 26, no. 10, pp. 1823–1828.

    Article  CAS  Google Scholar 

  7. 7

    Jang, W.D., Hwang, J.H., Kim, H.U., Ryu, J.Y., and Lee, S.Y., Microb. Biotechnol., 2017, vol. 10, no. 5, pp. 1181–1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Velásquez-Riaño, M. and Bojacá, V., Cellulose, 2017, vol. 24, no. 7, pp. 2677–2698.

    Article  CAS  Google Scholar 

  9. 9

    Food and Agriculture Organization of the United Nations. FAOSTAT Database, Rome, Italy: FAO, 2014. Retrieved November 8, 2017. http://www.fao.org/ faostat/en/#data/QC.

  10. 10

    Neera, Ramana, K.V., and Batra, H.V., Appl. Biochem. Biotechnol., 2015, vol. 176, no. 4, pp. 1162–1173.

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Food and Agriculture Organization of the United Nations. FAOSTAT Database, Rome, Italy: FAO, 2017. Retrieved November 8, 2017. http://www.fao.org/save-food/ resources/keyfindings/en/.

  12. 12

    Urbina, L., Hernández, M., Eceiza, A., Gabilondo, N., Corcuera, M.A., Prieto, M.A., and Retegi, A., Cellulose, 2017, vol. 24, no. 5, pp. 2071–2082.

    Article  CAS  Google Scholar 

  13. 13

    Semjonovs, P., Ruklisha, M., Paegle, L., Saka, M., Treimane, R., Skute, M., et al., Appl. Microbiol. Biotechnol., 2017, vol. 101, no. 3, pp. 1003–1012.

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Gromovykh, T.I., Sadykova, V.S., Lutcenko, S.V., Dmitrenok, A.S., Feldman, N.B., Danilchuk, T.N., and Kashirin, V.V., Appl. Biochem. Microbiol., 2017, vol. 53, no. 1, pp. 60–67.

    Article  CAS  Google Scholar 

  15. 15

    Chinnici, F., Spinabelli, U., Riponi, C., and Amati, A., J. Food Compost. Anal., 2005, vol. 18, no. 2-3, pp. 121–130.

    Article  CAS  Google Scholar 

  16. 16

    Schrecker, S.T. and Gostomski, P.A., Biotechnol. Lett., 2005, vol. 27, no. 19, pp. 1435–1438.

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Shezad, O., Khan, S., Khan, T., and Park, J.K., Carbohydr. Polym., 2010, vol 82, no. 1, pp. 173–180.

    Article  CAS  Google Scholar 

  18. 18

    Mohite, B.V. and Patil, S.V., Carbohydr. Polym., 2014, vol. 106, pp. 132–141.

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Gea, S., Reynolds, C.T., Roohpour, N., Wirjosentono, B., Soykeabkaew, N., Bilotti, E., and Peijs, T., Bioresour. Technol., 2011, vol. 102, no. 19, pp. 9105–9110.

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Moharram, M.A., and Mahmoud, O.M., J. Appl. Polym. Sci., 2008, vol. 107, no. 1, pp. 30–36.

    Article  CAS  Google Scholar 

  21. 21

    Movasaghi, Z., Rehman, S., and Rehman, D.I. ur., Appl. Spectrosc Rev., 2008, vol. 43, no. 2, pp. 134–179.

    Article  CAS  Google Scholar 

  22. 22

    Advantages of a Cu vs. Co X-ray Diffraction Source. Triclinic Labs News and Announcements Database, Lafayette, Indiana: Triclinic Labs Inc., USA, 2012. Retrieved November 8, 2017. http://tricliniclabs. com/downloadable-documents/Advantages%20of% 20a%20Cu%20vs.%20Co%20X-ray%20Diffraction% 20Source%20-%20Stahly%20-%20Triclinic%20Labs% 20-Q32012.pdf.

  23. 23

    Kourkoumelis N., Powder diffraction, ICDD Annual Spring Meetings, O’Neill, Ed., London, 2013, vol. 28, pp. 137–148.

  24. 24

    Klechkovskaya, V.V., Baklagina, Y.G., Stepina, N.D., Khripunov, A.K., Buffat, P.A., Suvorova, E.I., et al., Crystallogr. Rep., 2003, vol. 48, no. 5, pp. 755–762.

    Article  CAS  Google Scholar 

  25. 25

    Ford, E.N.J., Mendon, S.K., Thames, S.F., and Rawlins, J.W., J. Eng. Fibers Fabr., 2010, vol. 5, no. 1, pp. 10–20.

    Google Scholar 

  26. 26

    Feng, X., Ullah, N., Wang, X., Sun, X., Li, C., Bai, Y., et al., J. Food Sci., 2015, vol. 80, no. 10, pp. E2217–E2227.

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Li, H., Zhang, W., Xu, W., and Zhang, X., Macromolecules, 2000, vol. 33, no. 2, pp. 465–469.

    Article  CAS  Google Scholar 

  28. 28

    Kim, J.Y., and Kim, S.H., Nanocomposites—New Trends and Developments, Ebrahim, F., Ed., InTech, 2012.

    Google Scholar 

  29. 29

    Tatsumi, D. and Matsumoto, T., J. Cent. South Univ. Technol., 2007, vol. 14, suppl. 1, pp. 250–253.

    Article  Google Scholar 

  30. 30

    Roy, N., Saha, N., Kitano, T., and Saha, P., J. Appl. Polym. Sci., 2010, vol. 117, no. 3, pp. 1703–1710.

    CAS  Google Scholar 

  31. 31

    Barud, H.S., Ribeiro, C.A., Crespi, M.S., Martines, M.A.U., Dexpert-Ghys, J., Marques, R.F.C., et al., J. Therm. Anal. Calorim., 2007, vol. 87, no. 3, pp. 815–818.

    Article  CAS  Google Scholar 

  32. 32

    Poletto, M., Pistor, V., and Zattera, A.J., Cellulose—Fundamental Aspects, van de Ven, T. and Godbout, L., Eds., InTech, 2013.

  33. 33

    Ougiya, H., Watanabe, K., Matsumura, T., and Yoshinaga, F., Biosci. Biotechnol. Biochem., 1998, vol. 62, no. 9, pp. 1714–1719.

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Mirhosseini, H. and Amid, B.T., Chem. Cent. J., 2013, vol. 7, no. 1, pp. 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Chau, C.F. and Huang, Y.L., Food Chem., 2004, vol. 85, no. 2, pp. 189–194.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Saha.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, S., Saha, N. & Saha, P. Characterization of Bacterial Cellulose Produced using Media Containing Waste Apple Juice. Appl Biochem Microbiol 54, 649–657 (2018). https://doi.org/10.1134/S0003683818060042

Download citation

Keywords:

  • bacterial cellulose
  • Co X-ray diffraction
  • water holding capacity
  • water absorption capacity
  • viscoelastic property