Applied Biochemistry and Microbiology

, Volume 54, Issue 4, pp 432–435 | Cite as

Bioregeneration of Leaching Solutions during Two-Step Processing of Copper-Zinc Concentrate

  • N. V. FomchenkoEmail author
  • M. I. Muravyov
  • V. S. Melamud


A comparative study of the oxidation of ferrous iron ions by various cultures of acidophilic chemolithotrophic microorganisms in solutions obtained after ferric leaching of copper-zinc concentrate at 80°C has been carried out. It was shown that the use of a moderately thermophilic culture for bioregeneration of leaching solutions was preferable. At the same time, the oxidation rate of Fe2+ ions reached 0.88 g/(L h), or 21.1 g/(L day). We propose that the activity of the moderately thermophilic culture was due to the presence of the mixotrophic bacteria Sulfobacillus spp., which used organic products of the microbial lysis for their growth. These products were formed during high-temperature ferric leaching of the copper-zinc concentrate with the biosolution.


bioregeneration leaching acidophilic microorganisms biohydrometallurgy nonferrous metals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fomchenko, N.V. and Muravyov, M.I., Appl. Biochem. Microbiol., 2017, vol. 53, no. 1, pp. 73–77.CrossRefGoogle Scholar
  2. 2.
    Fomchenko, N.V. and Muravyov, M.I., Appl. Biochem. Microbiol., 2017, vol. 53, no. 4, pp. 448–452.CrossRefGoogle Scholar
  3. 3.
    Fomchenko, N.V. and Muravyov, M.I., Appl. Biochem. Microbiol., 2017, vol. 53, no. 6, pp. 715–718.CrossRefGoogle Scholar
  4. 4.
    Fomchenko, N.V., Muravyov, M.I., and Kondrat’eva, T.F., Hydrometallurgy, 2010, vol. 101, nos. 1–2, pp. 28–34.CrossRefGoogle Scholar
  5. 5.
    Muravyov, M.I. and Bulaev, A.G., Miner. Eng., 2013, vol. 45, pp. 108–114.CrossRefGoogle Scholar
  6. 6.
    Fomchenko, N.V. and Muravyov, M.I., Int. J. Miner. Proc., 2014, vol. 133, pp. 112–118.CrossRefGoogle Scholar
  7. 7.
    Fomchenko, N.V., Kondrat’eva, T.F., and Muravyov, M.I., Hydrometallurgy, 2016, vol. 64, pp. 78–82.CrossRefGoogle Scholar
  8. 8.
    Smalley, N. and Davis, G., Miner. Eng., 2000, vol. 13, no. 6, pp. 599–608.CrossRefGoogle Scholar
  9. 9.
    Patel, B.C., Sinha, M.K., Tipre, D.R., Pillai, A., and Dave, S.R., Biores. Technol., 2014, vol. 157, pp. 310–315.CrossRefGoogle Scholar
  10. 10.
    Fomchenko, N.V. and Biryukov, V.V., Appl. Biochem. Microbiol., 2009, vol. 45, no. 1, pp. 56–60.CrossRefGoogle Scholar
  11. 11.
    Muravyov, M.I., Fomchenko, N.V., and Kondrat’eva, T.F., Adv. Mater. Res., 2015, vol. 1130, pp. 359–362.CrossRefGoogle Scholar
  12. 12.
    Muravyov, M.I., Fomchenko, N.V., and Kondrat’eva, T.F., Appl. Biochem. Microbiol., 2011, vol. 47, no. 6, pp. 607–614.CrossRefGoogle Scholar
  13. 13.
    Fomchenko, N.V. and Muravyov, M.I., Hydrometallurgy, 2017, vol. 174, pp. 116–122.CrossRefGoogle Scholar
  14. 14.
    Silverman, M.P. and Lundgren, D.C., J. Bacteriol., 1959, vol. 77, no. 5, pp. 642–647.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Reznikov, A.A., Mulikovskaya, E.P., and Sokolov, I.Yu., Metody analiza prirodnykh vod (Methods of Analysis of Natural Waters), Moscow: Nedra, 1970.Google Scholar
  16. 16.
    Kondrat’eva, T.F., Bulaev, A.G., and Muravyov, M.I., Mikroorganizmy v biogeotekhnologiyakh pererabotki sul’fidnykh rud (Microorganisms in Biogeotechnologies for Processing Sulfide-Containing Ores), Moscow: Nauka, 2015.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. V. Fomchenko
    • 1
    Email author
  • M. I. Muravyov
    • 1
  • V. S. Melamud
    • 1
  1. 1.Winogradsky Institute of Microbiology, Biotechnology Research CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations