Skip to main content
Log in

The Role of Calcium-Dependent Protein Kinase Genes CPK16, CPK25, CPK30, and CPK32 in Stilbene Biosynthesis and the Stress Resistance of Grapevine Vitis amurensis Rupr.

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

It is known that calcium-dependent protein kinases (CDPK or CPK) are implicated in the regulation of plant development and stress adaptation. However, there is a lack of information on the properties and functions of certain CDPK family members. The present study investigates the functions of four CDPK genes of the grapevine Vitis amurensis Rupr. in the formation of its high stress resistance level and the production of valuable secondary metabolites. Overexpression of the CPK30 gene of V. amurensis considerably increased the resistance of V. amurensis transgenic cell lines to salt and cold stresses, while CPK16, CPK25, and CPK32 overexpression did not influence the salt and temperature stress tolerance. VaCPK16 and VaCPK32 overexpression increased stilbene production in V. amurensis cell cultures by 2.1–3.1 and 1.6–3.1 times, respectively. The data indicate that the VaCPK30 gene is involved in the formation of grapevine salt and cold stress resistance, while the VaCPK16 and VaCPK32 genes contribute to increased stilbene accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Medvedev, S.S., Russ. J. Plant Physiol., 2005, vol. 52, pp. 249–270.

    Article  CAS  Google Scholar 

  2. Batistic, O. and Kudla, J., Biochim. Biophys. Acta, 2012, vol. 1820, pp. 1283–1293.

    Article  PubMed  CAS  Google Scholar 

  3. Hashimoto, K. and Kudla, J., Biochimie, 2011, vol. 93, pp. 2054–2059.

    Article  PubMed  CAS  Google Scholar 

  4. Harper, J.F. and Harmon, A., Nat. Rev. Mol. Cell Biol., 2005, vol. 6, pp. 555–566.

    Article  PubMed  CAS  Google Scholar 

  5. Schulz, P., Herde, M., and Romeis, T., Plant Physiol., 2013, vol. 163, pp. 523–530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Das, R. and Pandey, G.K., Curr. Genomics, 2010, vol. 11, pp. 2–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Liu, C.Y., Wang, L.J., Wang, J.F., et al., Food Chem., 2013, vol. 136, pp. 643–649.

    Article  PubMed  CAS  Google Scholar 

  8. Dubrovina, A.S. and Kiselev, K.V., Planta, 2017, vol. 346, pp. 597–623.

    Article  CAS  Google Scholar 

  9. Kiselev, K.V., Aleynova, O.A., Grigorchuk, V.P., and Dubrovina, A.S., Planta, 2017, vol. 245, pp. 151–159.

    Article  PubMed  CAS  Google Scholar 

  10. Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., et al., Nature, 2007, vol. 449, pp. 463–467.

    Article  PubMed  CAS  Google Scholar 

  11. Dubrovina, A.S., Kiselev, K.V., and Khristenko, V.S., J. Plant Phisiol., 2013, vol. 170, pp. 1491–1500.

    Article  CAS  Google Scholar 

  12. Dubrovina, A.S., Kiselev, K.V., Khristenko, V.S., and Aleynova, O.A., J. Plant Physiol., 2015, vol. 185, pp. 1–12.

    Article  PubMed  CAS  Google Scholar 

  13. Dubrovina, A.S., Kiselev, K.V., Khristenko, V.S., and Aleynova, O.A., Plant Cell Tiss. Organ Cult., 2016, vol. 124, pp. 137–150.

    Article  CAS  Google Scholar 

  14. Dubrovina, A.S., Kiselev, K.V., Khristenko, V.S., and Aleynova, O.A., Plant Growth Regul., 2017, vol. 82, pp. 79–89.

    Article  CAS  Google Scholar 

  15. Aleynova-Shumakova, O.A., Dubrovina, A.S., Manyakhin, A.Y., Karetin, Y.A., and Kiselev, K.V., Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 5541–5549.

    Article  PubMed  CAS  Google Scholar 

  16. Aleynova, O.A., Dubrovina, A.S., Manyakhin, A.Y., Karetin, Y.A., and Kiselev, K.V., Appl. Biochem. Biotechnol., 2015, vol. 175, pp. 1460–1476.

    Article  PubMed  CAS  Google Scholar 

  17. Aleynova, O.A., Dubrovina, A.S., and Kiselev, K.V., Plant Cell Tiss. Organ Cult., 2017, vol. 130, pp. 141–152.

    Article  CAS  Google Scholar 

  18. Tzfira, T., Tian, G.W., Lacroix, B., Vyas, S., Li, J., Leitner-Dagan, Y., Krichevsky, A., Taylor, T., Vainstein, A., and Citovsky, V., Plant. Mol. Biol., 2005, vol. 57, pp. 503–516.

    Article  PubMed  CAS  Google Scholar 

  19. Kiselev, K.V., Dubrovina, A.S., and Bulgakov, V.P., Appl. Microbiol. Biotechnol., 2009, vol. 82, pp. 647–655.

    Article  PubMed  CAS  Google Scholar 

  20. Kiselev, K.V., Ogneva, Z.V., Suprun, A.R., and Zhuravlev, Yu.N., Russ. J. Genet., 2016, vol. 52, pp. 1157–1163.

    Article  CAS  Google Scholar 

  21. Livak, K.J. and Schmittgen, T.D., Methods, 2001, vol. 25, pp. 402–408.

    Article  PubMed  CAS  Google Scholar 

  22. Aleynova, O.A., Grigorchuk, V.P., Dubrovina, A.S., Rybin, V.G., and Kiselev, K.V., Plant Cell Tiss. Organ Cult., 2016, vol. 125, pp. 329–339.

    Article  CAS  Google Scholar 

  23. Cheng, S.H., Willmann, M.R., Chen, H.C., and Sheen, J., Plant Physiol., 2002, vol. 129, pp. 469–485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kiselev, K.V., Appl. Microbiol. Biotechnol., 2011, vol. 90, pp. 417–425.

    Article  PubMed  CAS  Google Scholar 

  25. Kiselev, K.V. and Aleinova, O.A., Appl. Biochem. Microbiol., 2016, vol. 52, pp. 56–60.

    Article  CAS  Google Scholar 

  26. Kiselev, K.V., Dubrovina, A.S., Veselova, M.V., Bulgakov, V.P., Fedoreyev, S.A., and Zhuravlev, Y.N., J. Biotechnol., 2007, vol. 128, pp. 681–692.

    Article  PubMed  CAS  Google Scholar 

  27. Boudsocq, M. and Sheen, J., Trends Plant Sci., 2013, vol. 18, pp. 30–40.

    Article  PubMed  CAS  Google Scholar 

  28. Matschi, S., Hake, K., Herde, M., Hause, B., and Romeis, T., Plant Cell, 2015, vol. 27, pp. 591–606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wei, S., Hu, W., Deng, X., Zhang, Y., Liu, X., Zhao, X., Luo, Q., Jin, Z., Li, Y., Zhou, S., Sun, T., Wang, L., Yang, G., and He, G., BMC Plant Biol., 2014, vol. 14, article ID133.

  30. Manimaran, P., Mangrauthia, S.K., Sundaram, R.M., and Balachandran, S.M., J. Plant Physiol., 2015, vol. 174, pp. 41–48.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang, K., Han, Y.T., Zhao, F.L., Hu, Y., Gao, Y.R., Ma, Y.F., Zheng, Y., Wang, Y.J., and Wen, Y.Q., BMC Plant Biol., 2015, vol. 15, article ID164.

  32. Zhao, J., Davis, L.C., and Verpoorte, R., Biotechnol. Adv., 2005, vol. 23, pp. 283–333.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kiselev.

Additional information

Original Russian Text © A.S. Dubrovina, O.A. Aleynova, A.Y. Manyakhin, K.V. Kiselev, 2018, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2018, Vol. 54, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovina, A.S., Aleynova, O.A., Manyakhin, A.Y. et al. The Role of Calcium-Dependent Protein Kinase Genes CPK16, CPK25, CPK30, and CPK32 in Stilbene Biosynthesis and the Stress Resistance of Grapevine Vitis amurensis Rupr.. Appl Biochem Microbiol 54, 410–417 (2018). https://doi.org/10.1134/S0003683818040051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818040051

Keywords

Navigation