Skip to main content
Log in

Antagonistic Activity of Lactic Acid Bacteria Lactobacillus spp. against Clinical Isolates of Klebsiella pneumoniae

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The screening of three strains of lactic acid bacteria identified as Lactobacillus rhamnosus, Lactobacillus reuteri, and Lactobacillus helveticus showed significant antagonistic activity against Klebsiella pneumoniae strains characterized by multiple antibiotic resistance. Lactobacilli cocultivated with the Klebsiella strains inhibited their growth 20 to 86% on the first and second days, respectively. Exoproteome analysis of L. rhamnosus cocultivated with K. pneumoniae revealed the induction of peptidoglycan hydrolases, including extracellular lytic transglycosylases, family II (MltA), and endopeptidases capable of disrupting the peptidoglycan bacterial cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dent, L.L., Marshall, D.R., Pratap, S., and Hulette, R.B., BMC Infect. Dis., 2010, vol. 10. doi 10.1186/1471-2334-10-196

  2. Grigor'evskaya, Z.V., Petukhova, I.N., Bagirova, N.S., Shil’nikova, I.I., Tereshchenko, I.V., Grigor’evskii, E.D., and Dmitrieva, N.V., Sib. Onkol. Zh., 2017, vol. 16, no. 1, pp. 91–97.

    Article  Google Scholar 

  3. WHO. Global Priority List of Antibiotic-resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics, 2017.

  4. Li, B., Ding, X., Meng, Y., Yu, S., Du, J., Xu, M., Li, W., Jin, D., Huo, G., and Liu, F., Front. Microbiol., 2017, vol. 8. doi 10.3389/fmicb.2017.01238

  5. Coman, M.M., Verdenelli, M.C., Cecchini, C., Silvi, S., Orpianesi, C., Boyko, N., and Cresci, A., J. Appl. Microbiol., 2014, vol. 117, no. 2, pp. 518–527. doi 10.1111/jam.12544

    Article  PubMed  CAS  Google Scholar 

  6. Kleerebezem, M., Hols, P., Bernard, E., Rolain, T., Zhou, M., Siezen, R.J., and Bron, P.A., FEMS Microbiol. Rev., 2010, vol. 34, no. 2, pp. 199–230.

    Article  PubMed  CAS  Google Scholar 

  7. Ortiz, M.E., Bleckwedel, J., Fadda, S., Picariello, G., Hebert, E.M., Raya, R.R., and Mozzi, F., PLoS One, 2017, vol. 12, no. 1. doi 10.1371/journal.pone.0169441

    Google Scholar 

  8. De Angelis, M., Calasso, M., Cavallo, N.M., Di Cagno, R., and Gobbetti, M., Proteomics, 2016, vol. 16, no. 6, pp. 946–962. doi 10.1002/pmic.201500117

    Article  PubMed  CAS  Google Scholar 

  9. Rozhkova, I.V., Raskoshnaya, T.A., Botina, S.G., and Begunova, A.V., Moloch. Promyshl., 2015, vol. 12, pp. 38–39.

    Google Scholar 

  10. Botina, S.G., Lysenko, A.M., and Sukhodolets, V.V., Microbiology (Moscow), 2005, vol. 74, no. 4, pp. 448–452.

    Article  CAS  Google Scholar 

  11. Nietupski, R., Stone, B.B., and Weisburg, W.M., MA, United States Assigned to Amoco Corporation Biotechnology Advances, 1997, vol. 15, no. 1, p. 161.

    Google Scholar 

  12. Gerkhard, F., Moscow: Mir, 1984, vol. 3.

  13. Determination of the sensitivity of microorganisms to antibacterial drugs, Klin. Mikrobiol. Antimikrob. Khimioter., 2004. T. 6, pp. 306–359.

  14. Kniemeyer, O., Lessing, F., Scheibner, O., Hertweck, C., and Brakhage, A., Curr. Genet., 2006, vol. 49, pp. 178–189. doi 10.1007/s00294-005-0047-9

    Article  PubMed  CAS  Google Scholar 

  15. O'Farrell, P.H., J. Biol. Chem., 1975, vol. 250, pp. 4007–4021. doi 10.1016/j.molbrainres.2004.05.005

    PubMed  CAS  Google Scholar 

  16. Blair, J., Webber, M., Baylay, A., Ogbolu, D., and Piddock, L., Nat. Rev. Microbiol., 2015, vol. 13, pp. 42–51. doi 10.1038/nrmicro3380

    Article  PubMed  CAS  Google Scholar 

  17. Shabanova, V.V., Krasnova, M.V., Bozhkova, S.A., Ageevets, V.A., Lazareva, I.V., and Rukina, A.N., Traumatol. Orthop., 2015, vol. 2, no. 76, pp. 90–98.

    Google Scholar 

  18. Poirel, L., Potron, A., and Nordmann, P., J. Antimicrob. Chemother., 2012, vol. 67, no. 7, pp. 1597–1606. doi 10.1093/jac/dks121

    Article  PubMed  CAS  Google Scholar 

  19. Liu, Y., Wang, Y., Walsh, T., Yi, L., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L.-F., Gu, D., Ren, H., Chen, X., Lv, L., He, D, Zhou, H., Liang, Z., Liu, J.-H., and Shen, J., Lancet Infect. Dis., 2016, vol. 16, no. 2, pp. 161–168. doi 10.1016/S1473-3099(15)00424-7

    Article  PubMed  CAS  Google Scholar 

  20. Morita, H., Toh, H., Fukuda, S., Horikawa, H., Oshima, K., Suzuki, T., Murakami, M., Hisamatsu, S., Kato, Y., Takizawa, T., Fukuoka, H., Yoshimura, T., Itoh, R., O’Sullivan, D.J., McKay, L.L., Ohno, H., Kikuchi, J., Masaoka, T., and Hattori, M., DNA Res., 2008, vol. 15, no. 3, pp. 151–161. doi 10.1093/dnares/dsn009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dellaglio, F., International Dairy Federation. Fermented Milk, 2003, no. 0301, pp. 34–54.

    CAS  Google Scholar 

  22. Douillard, F.P., Ribbera, A., Jarvinen, H.M., Kant, R., Pietila, T.E., Randazzo, C., Paulin, L., Laine, P.K., Caggia, C., Ossowski, I., Reunanen, J., Satokari, R., Salminen, S., Palva, A., and de Voscor, W.M., Appl. Environ. Microbiol., 2013, vol. 79, no. 6, pp. 1923–1933.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Moraes, P.M., Perin, L.M., Junior, A.S., and Nero, L.A., Braz. J. Microbiol., 2013, vol. 44, no. 1, pp. 109–112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Calasso, M., Di Cagno, R., De Angelis, M., Campanella, D., Minervini, F., and Gobbetti, M., Appl. Environ. Microbiol., 2013, vol. 79, no. 8, pp. 2657–2669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Savijoki, K., Lietzen, N., Kankainen, M., Alatossava, T., Koskenniemi, K., Varmanen, P., and Nyman, T.A., J. Proteome Res., 2011, vol. 10, no. 8, pp. 3460–3473. dx.doi. org/doi 10.1021/pr2000896

    Article  PubMed  CAS  Google Scholar 

  26. Zhou, M., Theunissen, D., Wels, M., and Siezen, R.J., BMC Genomics, 2010, vol. 11. doi 10.1186/1471-2164-11-651

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Fedorova.

Additional information

Original Russian Text © T.V. Fedorova, D.V. Vasina, A.V. Begunova, I.V. Rozhkova, T.A. Raskoshnaya, N.I. Gabrielyan, 2018, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2018, Vol. 54, No. 3, pp. 264–276.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, T.V., Vasina, D.V., Begunova, A.V. et al. Antagonistic Activity of Lactic Acid Bacteria Lactobacillus spp. against Clinical Isolates of Klebsiella pneumoniae. Appl Biochem Microbiol 54, 277–287 (2018). https://doi.org/10.1134/S0003683818030043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818030043

Keywords

Navigation