Skip to main content
Log in

Role of acetyl-CoA Synthetase and LovE Regulator Protein of Polyketide Biosynthesis in Lovastatin Production by Wild-Type and Overproducing Aspergillus terreus Strains

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The expression of two key genes of lovastatin (LOV) biosynthesis has been studied in two Aspergillus terreus strains characterized by a more than hundredfold difference in the LOV yield. As compared to the wild-type strain ATCC 20542, in the overproducing strain 43-16 significantly enhanced expression level of LOV biosynthetic genes (by 5–50 times), transcription factor lovE (by 3–20 times), and the acs gene, which encodes acetyl-CoA synthetase (by two times), was detected. To improve the efficiency of LOV biosynthesis, recombinant A. terreus strains constitutively expressing the ACS1 gene from Saccharomyce scerevisiae or the lovE gene from A. terreus have been designed by metabolic engineering methods. According to the obtained results, the expression of ACS1 in strain 43-16 results in the suppression of lovC and lovD production and a more than 25% reduction of LOV production. In the case of low-active ATCC 20542/ACS1 recombinants, the expression level of lov genes remains almost unchanged, while the expression of the endogenous asc1 gene is enhanced and the LOV yield increases by 117%. Constitutive overexpression of the lovE gene in the ATCC 20452 strain results in the increase of mRNA levels of biosynthetic lov-genes and is accompanied by a significant (6–10 times) increase in the LOV yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrios-González, J. and Miranda, R.U., Appl. Microbiol. Biotechnol., 2010, vol. 85, no. 4, pp. 869–883.

    Article  PubMed  Google Scholar 

  2. Manzoni, M. and Rollini, M., Appl. Microbiol. Biotechnol., 2002, vol. 58, no. 5, pp. 555–564.

    Article  CAS  PubMed  Google Scholar 

  3. Casas López, J.L., Sánchez Péreza, J.A., Fernández Sevillaa, J.M., Acién Fernándeza, F.G., Molina Grimaa, E., and Chistib, Y., Enzyme Microb. Technol., 2003, vol. 33, nos. 2–3, pp. 270–277.

    Article  Google Scholar 

  4. Jahromi, M.F., Liang, J.B., Ho, Y.W., Mohamad, R., Goh, Y.M., and Shokryazdan, P., J. Biomed. Biotechnol., 2012, vol. 2012, pp. 1–11.

    Article  Google Scholar 

  5. Boruta, T. and Bizukojc, M., J. Biotechnol., 2014, vol. 175, no. 1, pp. 53–62.

    Article  CAS  PubMed  Google Scholar 

  6. Bizukojc, M. and Ledakowicz, S., Adv. Biochem. Eng. Biotechnol., 2015, vol. 149, pp. 133–170.

    CAS  PubMed  Google Scholar 

  7. Endo, A.A., Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci., 2010, vol. 86, no. 5, pp. 484–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McLean, K.J., Hans, M., Meijrink, B., van Scheppingen, W.B., Aad Vollebregt, A., Tee, K.L., van der Laan, J.-M., Leys, D., Munro, A.W., and van den Berg, M.A., Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 9, pp. 2847–2852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boruta, T. and Bizukojc, M., J. Microbiol. Biotechnol., 2017, vol. 33, no. 2, pp. 33–34.

    Article  Google Scholar 

  10. Stossel, T.P., Cell, 2008, vol. 134, no. 6, pp. 903–905.

    Article  CAS  PubMed  Google Scholar 

  11. Hendrickson, L., Davis, C.R., Roach, C., Nguyen, D.K., Aldrich, T., McAda, P.C., and Reeves, C.D., Chem. Biol., 1999, vol. 6, no. 7, pp. 429–439.

    Article  CAS  PubMed  Google Scholar 

  12. Subazini, T.K. and Kumar, G.R., Bioinformation, 2011, vol. 6, no. 7, pp. 250–254.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brakhage, A.A., Nat. Rev. Microbiol., 2013, vol. 11, no. 1, pp. 21–32.

    Article  CAS  PubMed  Google Scholar 

  14. Brakhage, A.A. and Schroeckh, V., Fungal Genet. Biol., 2011, vol. 48, no. 1, pp. 15–22.

    Article  CAS  PubMed  Google Scholar 

  15. Mulder, K.C., Mulinari, F., Franco, O.L., Soares, M.S., Magalhaes, B.S., and Parachin, N.S., Biotechnol. Adv., 2015, vol. 33, no. 6, pp. 648–665.

    Article  CAS  PubMed  Google Scholar 

  16. RF Patent no. 2261901, Byul. Izobret. 2005, no. 28, pp. 1–16.

  17. Dumina, M.V., Zhgun, A.A., Kerpichnikov, I.V., Domracheva, A.G., Novak, M.I., Valiakhmetov, A.Ya., Knorre, D.A., Severin, F.F., El’darov, M.A., and Bartoshevich, Yu.E., Appl. Biochem. Microbiol., 2013, vol. 49, no. 4, pp. 368–377.

    Article  CAS  Google Scholar 

  18. Zhgun, A.A., Ivanova, M.A., Domracheva, A.G., Novak, M.I., El’darov, M.A., Skryabin, K.G., and Bartoshevich, Yu.E., Appl. Biochem. Microbiol., 2008, vol. 46, no. 6, pp. 600–607.

    Article  Google Scholar 

  19. Dumina, M.V., Zhgun, A.A., Novak, M.I., Domratcheva, A.G., Petukhov, D.V., Dzhavakhiya, V.V., Eldarov, M.A., and Bartoshevitch, Iu.E., J. Microbiol. Biotechnol., 2014, vol. 30, no. 11, pp. 2933–2941.

    Article  CAS  Google Scholar 

  20. Lu, G. and Moriyama, E.N., Brief. Bioinform., 2004, vol. 5, no. 4, pp. 378–388.

    Article  CAS  PubMed  Google Scholar 

  21. Dumina, M.V., Zhgun, A.A., Domracheva, A.G., Novak, M.I., and El’darov, M.A., Russ. J. Genet., 2012, vol. 48, no. 8, pp. 778–784.

    Article  CAS  Google Scholar 

  22. Bizukojc, M. and Ledakowicz, S., J. Biotechnol., 2007, vol. 130, no. 4, pp. 422–435.

    Article  CAS  PubMed  Google Scholar 

  23. Shiba, Y., Paradise, E.M., Kirby, J., Ro, D.K., and Keasling, J.D., Metab. Eng., 2007, vol. 9, no. 2, pp. 160–168.

    Article  CAS  PubMed  Google Scholar 

  24. Askenazi, M., Driggers, E.M., Holtzman, D.A., Norman, T.C., Iv-erson, S., Zimmer, D.P., Boers, M.E., et al., Nat. Biotechnol., 2003, vol. 21, no. 2, pp. 150–156.

    Article  CAS  PubMed  Google Scholar 

  25. US Patent no. 7026460 B2, 2006.

  26. RF Patent no. 2434944 C12N15/63, C12N 15/80, Byul. Izobret., 2011, no. 33, pp. 1–29.

  27. Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J.M., Madeo, F., and Kroemer, G., Cell Metab., 2015, vol. 21, no. 6, pp. 805–821.

    Article  CAS  PubMed  Google Scholar 

  28. Choudhary, C., Weinert, B.T., Nishida, Y., Verdin, E., and Mann, M., Nat. Rev. Mol. Cell Biol., 2014, vol. 15, no. 8, pp. 536–550.

    Article  CAS  PubMed  Google Scholar 

  29. Bok, J.W. and Keller, N.P., Eukaryot. Cell, 2004, vol. 3, no. 2, pp. 527–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perrin, R.M., Fedorova, N.D., Bok, J.W., Cramer, R.A., Wortman, J.R., Kim, H.S., Nierman, W.C., and Keller, N.P., PLoS Pathog., 2007, vol. 3, no. 4, p. e50.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sarikaya-Bayram, O., Palmer, J.M., Keller, N., Braus, G.H., and Bayram, O., Front. Microbiol., 2015, vol. 6, no. 1, pp. 1–7.

    PubMed  PubMed Central  Google Scholar 

  32. Lazo, G.R., Stein, P.A., and Ludwig, R.A., Biotechnology (New York), 1991, vol. 9, no. 10, pp. 963–967.

    Article  CAS  PubMed  Google Scholar 

  33. Sikorski, R.S. and Hieter, P., Genetics, 1989, vol. 122, no. 1, pp. 19–27.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhgun.

Additional information

Original Russian Text © A.A. Zhgun, M.V. Dumina, T.M. Voinova, V.V. Dzhavakhiya, M.A. Eldarov, 2018, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2018, Vol. 54, No. 2, pp. 175–185.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhgun, A.A., Dumina, M.V., Voinova, T.M. et al. Role of acetyl-CoA Synthetase and LovE Regulator Protein of Polyketide Biosynthesis in Lovastatin Production by Wild-Type and Overproducing Aspergillus terreus Strains. Appl Biochem Microbiol 54, 188–197 (2018). https://doi.org/10.1134/S0003683818020138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818020138

Keywords

Navigation