Abstract
The defense mechanisms of bacterial cells against antibiotics, which induce specific complexes of adaptive reactions at the levels of replication, transcription, translation, and enzymatic activity, are reviewed. These adaptive reactions are conventionally considered to be stress responses. Specific stress responses are integrated in an adaptive network that is flexible in its reaction to environmental signals and capable of increasing antibiotic tolerance and maintaining the viability of bacterial cells in order to restart their growth once environmental conditions are again optimal. This facilitates the selection of mutations with high resistance to antibiotics. A prerequisite of efficient tools for the inhibition of such resistance is a profound knowledge of the mechanisms responsible for the development of physiological tolerance.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Waksman, S.A. and Woodruff, H.B., J. Bacteriol., 1940, vol. 40, no. 4, pp. 581–600.
Goh, E.B., Yim, G., Tsui, W., McClure, J., Surette, M.G., and Davies, J., Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 26, pp. 17025–17030.
Bulgakova, V.G., Vinogradova, K.A., Orlova, T.I., Kozhevin, P.A., and Polin, A.N., Antibiot. Khimioter., 2014, vol. 59, nos 1-2, pp. 36–43.
Zablotni, A. and Jaworski, A., Postepy Hig. Med. Dosw. (Online), 2014, vol. 68, pp. 1040–1049. doi 10.5604/ 17322693.1119027
Davies, J., Spiegelman, G.B., and Yim, G., Curr. Opin. Microbiol., 2006, vol. 9, no. 5, pp. 445–453.
Lopez-Diazguerrero, N.E., Gonzalez, Puertos V.Y., Hernandez-Bautista, R.J., and Alarcon-Aguilar, A., Gac. Med. Mex., 2013, vol. 149, no. 4, pp. 438–447.
Calabrese, E.J., Intern. J. Mol. Sci., 2016, vol. 17, no. 12, p. 2034. doi 10.3390/ijms17122034
Mathieu, A., Fleurier, S., Frenoy, A., Dairou, J., Bredeche, M.F., Sanchez-Vizuete, P., Song, X., and Matic, I., Cell Rep., 2016, vol. 17, no. 1, pp. 46–57.
Fajardo, A. and Martìnez, J.L., Curr. Opin. Microbiol., 2008, vol. 11, no. 2, pp. 161–167.
Ng, W.L., Kazmierczak, K.M., Robertson, G.T., Gilmour, R., and Winkler, M.E., J. Bacteriol., 2003, vol. 185, no. 1, pp. 359–370.
Martinez, J.L., F1000Res, 2017, vol. 6, no. 51, pp. 1–10. 10. 12688/f1000research.9685.1
Martin, J.F., Casqueiro, J., and Liras, P., Curr. Opin. Microbiol., 2005, vol. 8, no. 3, pp. 282–293.
Alekshun, M.N. and Levy, S.B., Cell, 2007, vol. 128, no. 6, pp. 1037–1050.
Pu, Y., Zhao, Z., Li, Y., Zou, J., Ma, Q., Zhao, Y., Ke, Y., Zhu, Y., Chen, H., Baker, MatthewA., Ge, H., Sun, Y., Xie Xiaoliang, S., and Bai, F., Mol. Cell, 2016, vol. 62, no. 2, pp. 284–294.
Miller, C., Thomsen, L.E., Gaggero, C., Mosseri, R., Ingmer, H., and Cohen, S.N., Science, 2004, vol. 305, no. 5690, pp. 1629–1631.
Radeck, J., Fritz, G., and Mascher, T., Curr. Genet., 2017, vol. 63, no. 1, pp. 79–90.
Diggle, S.P., Cornelis, P., Williams, P., and Camara, M., Int. J. Med. Microbiol., vol. 296, nos. 2–3, pp. 83–91.
Reuter, K., Steinbach, A., and Helms, V., Perspect. Med. Chem., 2016, vol. 8, pp. 1–15. doi 10.4137/ PMC.S13209
Gilles, B. and Tom, C., Curr. Pharm. Des., 2015, vol. 21, no. 1, pp. 5–11.
Abraham, W.-R., Antibiotics, 2016, vol. 5, no. 3, pp. 1–16.
Tkachenko, A.G., Molekulyarnye mekhanizmy stressornykh otvetov u mikroorganizmov (Molecular Mechanisms of Stress Responses in Microorganisms), Yekaterinburg: UrO RAN, 2012.
Lewis, K., Annu. Rev. Microbiol., 2010, vol. 64, no. 15, p.23.
Radzikowski, J.L., Schramke, H., and Heinemann, M., Curr. Opin. Biotechnol., 2017, vol. 46, no. 8, pp. 98–105.
Brauner, A., Fridman, O., Gefen, O., and Balaban, N.Q., Nat. Rev. Microbiol., vol. 14, no. 5, pp. 320–330.
Levin-Reisman, I., Ronin, I., Gefen, O., Braniss, I., Shoresh, N., and Balaban, N.Q., Science, 2017, vol. 355, no. 6327, pp. 826–830.
Zorraquino, V., Kim, M., Rai, N., and Tagkopoulos, I., Mol. Biol. Evol., 2017, vol. 34, no. 3, pp. 707–717.
Dragosits, M., Mozhayskiy, V., Quinones-Soto, S., Park, J., and Tagkopoulos, I., Mol. Syst. Biol., 2013, vol. 9, no. 643, pp. 1–13.
Tagkopoulos, I., Liu, Y.C., and Tavazoie, S., Science, 2008, vol. 320, no. 5881, pp. 1313–1317.
Mitchell, A., Romano, G.H., Groisman, B., Yona, A., Dekel, E., Kupiec, M., Dahan, O., and Pilpel, Y., Nature, 2009, vol. 460, no. 7252, pp. 220–224.
Adler, C., Corbalan, N.S., Peralta, D.R., Pomares, M.F., de Cristobal, R.E., and Vincent, P.A., PLoS One, 2014, vol. 9, no. 1, p. e84734. doi 10.1371/ journal.pone.0084734
Storz, G. and Imlay, J.A., Curr. Opin. Microbiol., 1999, vol. 2, no. 2, pp. 188–194.
Messner, K.R. and Imlay, J.A., J. Biol. Chem., 2002, vol. 277, no. 45, pp. 42563–42571.
Imlay, J.A., Nat. Rev. Microbiol., 2013, vol. 11, no. 7, pp. 443–454.
Fu, H., Yuan, J., and Gao, H., Arch. Biochem. Biophys., 2015, vol. 584, no. 10, pp. 28–35.
Rolfe, M.D., Ocone, A., Stapleton, M.R., Hall, S., Trotter, E.W., Poole, R.K., Sanguinetti, G., and Green, J., Open Biol., 2012, vol. 2, no. 7, p. 120091. doi 10.1098/rsob.120091
Duval, V. and Lister, I.M., Int. J. Biotechnol. Wellness Ind., 2013, vol. 2, no. 3, pp. 101–124.
Poole, K., J. Antimicrob. Chemother., 2012, vol. 67, no. 9, pp. 2069–2089.
Martin, R.G., Gillette, W.K., Rhee, S., and Rosner, J.L., Mol. Microbiol., 1999, vol. 34, no. 3, pp. 431–441.
Barbosa, T.M. and Levy, S.B., J. Bacteriol., 2000, vol. 182, no. 12, pp. 3467–3474.
Imlay, J.A., Annu. Rev. Biochem., 2008, vol. 77, no. 1, pp. 755–776.
Wang, T., El Meouche, I., and Dunlop, M.J., Sci. Rep., 2017, vol. 7, no. 43839, pp. 1–7.
Kohanski, M.A., DePristo, M.A., and Collins, J.J., Mol. Cell, 2010, vol. 37, no. 3, pp. 311–320.
Dwyer, D.J., Kohanski, M.A., and Collins, J.J., Curr. Opin. Microbiol., 2009, vol. 12, no. 5, pp. 482–489.
Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J., Cell, 2007, vol. 130, no. 5, pp. 797–810.
Burger, R.M. and Drlica, K., J. Inorg. Biochem., 2009, vol. 103, no. 9, pp. 1273–1277.
Tkachenko, A.G., Akhova, A.V., Shumkov, M.S., and Nesterova, L.Y., Res. Microbiol., 2012, vol. 163, no. 2, pp. 83–91.
Akhova, A.V. and Tkachenko, A.G., FEMS Microbiol. Letts., 2014, vol. 353, no. 1, pp. 69–76.
Tkachenko, A., Nesterova, L., and Pshenichnov, M., Arch. Microbiol., 2001, vol. 176, nos. 1–2, pp. 155–157.
Tkachenko, A.G., Shumkov, M.S., and Akhova, A.V., Microbiology (Moscow), 2009, vol. 78, no. 1, pp. 25–31.
Tkachenko, A.G., Pozhidaeva, O.N., and Shumkov, M.S., Biochemistry (Moscow), 2006, vol. 71, pp. 1042–1049.
Tkachenko, A.G., Biochemistry (Moscow), 2004, vol. 69, no. 2, pp. 188–194.
Levitt, M.D., N. Engl. J. Med., 1970, vol. 282, no. 18, pp. 1039–1040.
Bekker, M., Alexeeva, S., Laan, W., Sawers, G., Teixeira de Mattos, J., and Hellingwerf, K., J. Bacteriol., 2010, vol. 192, no. 3, pp. 746–754.
Malpica, R., Sandoval, G.R.P., Rodriguez, C., Franco, B., and Georgellis, D., Antioxid. Red. Signal., 2006, vol. 8, nos. 5–6, pp. 781–795.
Henkel, S.G., Ter, BeekA., Steinsiek, S., Stagge, S., Bettenbrock, K., de Mattos, M.J., Sauter, T., Sawodny, O., and Ederer, M., PLoS One, 2014, vol. 9, no. 9, p. e107640. doi 10.1371/journal.pone.0107640
Perrenoud, A. and Sauer, U., J. Bacteriol., 2005, vol. 187, no. 9, pp. 3171–3179.
Unden, G. and Bongaerts, J., Biochim. Biophys. Acta, 1997, vol. 1320, no. 3, pp. 217–234.
Unden, G., Steinmetz, P.A., and Degreif-Dunnwald, P., EcoSal. Plus, 2014, vol. 6, no. 1, pp. 1–37. doi 10.1128/ecosalplus.ESP-0005-2013
Georgellis, D., Kwon, O., and Lin, E.C., J. Biol. Chem., 1999, vol. 274, no. 50, pp. 35950–35954.
Rodriguez, C., Kwon, O., and Georgellis, D., J. Bacteriol., 2004, vol. 186, no. 7, pp. 2085–2090.
Vemuri, G.N., Altman, E., Sangurdekar, D.P., Khodursky, A.B., and Eiteman, M.A., Appl. Environ. Microbiol., 2006, vol. 72, no. 5, pp. 3653–3661.
Holm, A.K., Blank, L.M., Oldiges, M., Schmid, A., Solem, C., Jensen, P.R., and Vemuri, G.N., J. Biol. Chem., 2010, vol. 285, no. 23, pp. 17498–17506.
Chapman, A.G. and Atkinson, D.E., Adv. Microb. Physiol., 1977, vol. 15, pp. 253–306.
Atkinson, D.E. and Chapman, A.G., Methods Enzymol., 1979, vol. 55, pp. 229–235.
Feniouk, B.A., Suzuki, T., and Yoshida, M., J. Biol. Chem., 2007, vol. 282, no. 1, pp. 764–772.
Nakanishi-Matsui, M., Sekiya, M., and Futai, M., Biochim. Biophys. Acta, 2016, vol. 1857, no. 2, pp. 129–140.
Tkachenko, A.G., Salakhetdinova, O.Ya., and Pshenichnov, M.R., Microbiology (Moscow), 1996, vol. 66, no. 6, pp. 644–648.
Tkachenko, A.G. and Chudinov, A.A., Dokl. Akad. Nauk SSSR, 1989, no. 305, pp. 219–222.
Chiaramello, A.E. and Zyskind, J.W., J. Bacteriol., 1990, vol. 172, no. 4, pp. 2013–2019.
Hauryliuk, V., Atkinson, G.C., Murakami, K.S., Tenson, T., and Gerdes, K., Nat. Rev. Microbiol., 2015, vol. 13, no. 5, pp. 298–309.
Dukan, S., Farewell, A., Ballesteros, M., Taddei, F., Radman, M., and Nystrom, T., Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 11, pp. 5746–5749.
Nystrom, T., Curr. Opin. Microbiol., 2003, vol. 5, no. 6, pp. 596–601.
Fredriksson, A., Ballesteros, M., Dukan, S., and Nystrom, T., Mol. Microbiol., 2006, vol. 59, no. 1, pp. 350–359.
Belenky, P., Ye, J.D., Porter, C.B., Cohen, N.R., Lobritz, M.A., Ferrante, T., Jain, S., Korry, B.J., Schwarz, E.G., Walker, G.C., and Collins, J.J., Cell Rep., 2015, vol. 13, no. 5, pp. 968–980.
Dwyer, D.J., Belenky, P.A., Yang, J.H., Macdonald, I.C., Martell, J.D., Takahashi, N., Chan, C.T., Lobritz, M.A., Braff, D., Schwarz, E.G., Ye, J.D., Pati, M., Vercruysse, M., Ralifo, P.S., Allison, K.R., Khalil, A.S., Ting, A.Y., Walker, G.C., and Collins, J.J., Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 20, pp. E2100–E2109.
Dwyer, D.J., Collins, J.J., and Walker, G.C., Annu. Rev. Pharmacol. Toxicol., 2015, vol. 55, pp. 313–332.
Imlay, J.A., Curr. Opin. Microbiol., 2015, vol. 24, pp. 124–131.
Mosel, M., Li, L., Drlica, K., and Zhao, X., Antimicrob. Agent. Chemother., 2013, vol. 57, no. 11, pp. 5755–5759.
Dwyer, D.J., Collins, J.J., and Walker, G.C., Annu. Rev. Pharmacol. Toxicol., 2015, vol. 55, no. 1, pp. 313–332.
Wu, Y., Vulic, M., Keren, I., and Lewis, K., Antimicrob. Agent. Chemother., 2012, vol. 56, no. 9, pp. 4922–4926.
Vega, N.M., Allison, K.R., Khalil, A.S., and Collins, J.J., Nat. Chem. Biol., 2012, vol. 8, no. 5, pp. 431–433.
Liu, K., Bittner, A.N., and Wang, J.D., Curr. Opin. Microbiol., 2015, vol. 24, pp. 72–79.
Brown, A., Fernandez, I.S., Gordiyenko, Y., and Ramakrishnan, V., Nature, 2016, vol. 534, no. 7606, pp. 277–280.
Teich, A., Meyer, S., Lin, H.Y., Andersson, L., Enfors, S.O., and Neubauer, P., Biotechnol. Progr., 1999, vol. 15, no. 1, pp. 123–129.
Chang, D.E., Smalley, D.J., and Conway, T., Mol. Microbiol., 2002, vol. 45, no. 2, pp. 289–306.
Traxler, M.F., Chang, D.E., and Conway, T., Proc. Nat. Acad. Sci. U. S. A., 2006, vol. 103, no. 7, pp. 2374–2379.
Traxler, M.F., Summers, S.M., Nguyen, H.T., Zacharia, V.M., Hightower, G.A., Smith, J.T., and Conway, T., Mol. Microbiol., 2008, vol. 68, no. 5, pp. 1128–1148.
Potrykus, K. and Cashel, M., Annu. Rev. Microbiol., 2008, vol. 62, no. 1, pp. 35–51.
Battesti, A. and Bouveret, E., J. Bacteriol., 2009, vol. 191, no. 2, pp. 616–624.
Potrykus, K., Murphy, H., Philippe, N., and Cashel, M., Environ. Microbiol., 2011, vol. 13, no. 3, pp. 563–575.
Xiao, H., Kalman, M., Ikehara, K., Zemel, S., Glaser, G., and Cashel, M., J. Biol. Chem., 1991, vol. 266, no. 9, pp. 5980–5990.
Durfee, T., Hansen, A.M., Zhi, H., Blattner, F.R., and Jin, D.J., J. Bacteriol., 2008, vol. 190, no. 3, pp. 1084–1096.
Atkinson, G.C., Tenson, T., and Hauryliuk, V., PLoS One, 2011, vol. 6, no. 8, p. e23479. doi 10.1371/journal. pone.0023479
Jiang, M., Sullivan, S.M., Wout, P.K., and Maddock, J.R., J. Bacteriol., 2007, vol. 189, no. 17, pp. 6140–6147.
Arenz, S., Abdelshahid, M., Sohmen, D., Payoe, R., Starosta, A.L., Berninghausen, O., Hauryliuk, V., Beckmann, R., and Wilson, D.N., Nucleic Acids Res., 2016, vol. 44, no. 13, pp. 6471–6481.
Mechold, U., Potrykus, K., Murphy, H., Murakami, K.S., and Cashel, M., Nucleic. Acid. Res., 2013, vol. 41, no. 12, pp. 6175–6189.
Zuo, Y., Wang, Y., and Steitz, T.A., Mol. Cell, 2013, vol. 50, no. 3, pp. 430–436.
Milon, P., Tischenko, E., Tomsic, J., Caserta, E., Folkers, G., La Teana, A., Rodnina, M.V., Pon, C.L., Boelens, R., and Gualerzi, C.O., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 38, pp. 13962–13967.
Mitkevich, V.A., Ermakov, A., Kulikova, A.A., Tankov, S., Shyp, V., Soosaar, A., Tenson, T., Makarov, A.A., Ehrenberg, M., and Hauryliuk, V., J. Mol. Biol., 2010, vol. 402, no. 5, pp. 838–846.
Corrigan, R.M., Bellows, L.E., Wood, A., and Grundling, A., Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 12, pp. E1710–E1719.
Wang, J.D., Sanders, G.M., and Grossman, A.D., Cell, 2007, vol. 128, no. 5, pp. 865–875.
Nazir, A. and Harinarayanan, R., J. Biosci., 2016, vol. 41, no. 2, pp. 277–282.
Jin, D.J., Cagliero, C., and Zhou, Y.N., FEMS Microbiol. Rev., 2012, vol. 36, no. 2, pp. 269–287.
Harms, A., Maisonneuve, E., and Gerdes, K., Science, 2016, vol. 354, no. 6318.
Shyp, V., Tankov, S., Ermakov, A., Kudrin, P., English, B.P., Ehrenberg, M., Tenson, T., Elf, J., and Hauryliuk, V., EMBO Rep., 2012, vol. 13, no. 9, pp. 835–839.
Krasny, L. and Gourse, R.L., EMBO J., 2004, vol. 23, no. 22, pp. 4473–4483.
Bremer, H. and Dennis, P., Biochimie, 2008, vol. 90, no. 3, pp. 493–499.
Fredriksson, A. and Nystrom, T., Curr. Opin. Microbiol., 2006, vol. 9, no. 6, pp. 612–618.
Fredriksson, A., Ballesteros, M., Peterson, C.N., Persson, O., Silhavy, T.J., and Nystrom, T., Genes Dev., 2007, vol. 21, no. 7, pp. 862–874.
Starosta, A.L., Lassak, J., Jung, K., and Wilson, D.N., FEMS Microbiol. Rev., 2014, vol. 38, no. 6, pp. 1172–1201.
Vinella, D., Albrecht, C., Cashel, M., and D’Ari, R., Mol. Microbiol., 2005, vol. 56, no. 4, pp. 958–970.
Ramisetty, B.C., Natarajan, B., and Santhosh, R.S., Crit. Rev. Microbiol., 2015, vol. 41, no. 1, pp. 89–100.
Murray, D.K. and Bremer, H., J. Mol. Biol., 1996, vol. 259, no. 1, pp. 41–57.
Seyfzadeh, M., Keener, J., and Nomura, M., Proc. Natl. Acad. Sci. U. S. A., 1993, vol. 90, pp. 11004–11008.
Spira, B., Silberstein, N., and Yagil, E., J. Bacteriol., 1995, vol. 177, no. 14, pp. 4053–4058.
Abranches, J., Martinez, A.R., Kajfasz, J.K., Chavez, V., Garsin, D.A., and Lemos, J.A., J. Bacteriol., 2009, vol. 191, no. 7, pp. 2248–2256.
Greenway, D.L.A. and England, R.R., Lett. Appl. Microbiol., 1999, vol. 29, no. 5, pp. 323–326.
Neidhardt, F.C., Proc. Natl. Acad. Sci. U. S. A., 1990, vol. 87, no. 15, pp. 5589–5593.
Amato, S.M., Fazen, C.H., Henry, T.C., Mok, W.W., Orman, M.A., Sandvik, E.L., Volzing, K.G., and Brynildsen, M.P., Front. Microbiol., 2014, vol. 5, pp. 1–9.
Ehrenberg, M., Bremer, H., and Dennis, P.P., Biochimie, 2013, vol. 95, no. 4, pp. 643–658.
Kudrin, P., Varik, V., Oliveira, S.R., Beljantseva, J., Del Peso, SantosT., Dzhygyr, I., Rejman, D., Cava, F., Tenson, T., and Hauryliuk, V., Antimicrob. Agents Chemother., 2017, vol. 61, no. 4, pp. 1–17.
Nguyen, F., Starosta, A.L., Arenz, S., Sohmen, D., Donhofer, A., and Wilson, D.N., Biol. Chem., 2014, vol. 395, no. 5, pp. 559–575.
Verstraeten, N., Knapen, W.J., Kint, C.I., Liebens, V., Bergh, B., Dewachter, L., Michiels, J.E., Fu, Q., David, C.C., Fierro, A.C., Marchal, K., Beirlant, J., Versees, W., Hofkens, J., Jansen, M., Fauvart, M., and Michiels, J., Mol. Cell, 2015, vol. 59, no. 1, pp. 9–21.
Tenson, T. and Mankin, A., Mol. Microbiol., 2006, vol. 59, no. 6, pp. 1664–1677.
Ogle, J.M. and Ramakrishnan, V., Annu. Rev. Biochem., 2005, vol. 74, no. 1, pp. 129–177.
Loveland, A.B., Bah, E., Madireddy, R., Zhang, Y., Brilot, A.F., Grigorieff, N., and Korostelev, A.A., Elife, 2016, vol. 5, no. 9, pp. 1–23.
Ballesteros, M., Fredriksson, A., Henriksson, J., and Nystrom, T., Mol. Microbiol., 2001, vol. 20, no. 18, pp. 5280–5289.
Igarashi, K. and Kashiwagi, K., Int. J. Biochem. Cell Biol., 2010, vol. 42, no. 1, pp. 39–51.
Terui, Y., Akiyama, M., Sakamoto, A., Tomitori, H., Yamamoto, K., Ishihama, A., Igarashi, K., and Kashiwagi, K., Int. J. Biochem. Cell Biol., 2012, vol. 44, no. 2, pp. 412–422.
Tkachenko, A.G. and Shumkov, M.S., Biochemistry (Moscow), 2004, vol. 69, no. 8, pp. 876–882.
Tkachenko, A.G., Kashevarova, N.M., Tyuleneva, E.A., and Shumkov, M.S., FEMS Microbiol. Letts., 2017, vol. 364, no. 9, pp. 1–9. doi 10.1093/femsle/fnx084
Tkachenko, A.G., Kashevarova, N.M., Karavaeva, E.A., and Shumkov, M.S., FEMS Microbiol. Letts., 2014, vol. 361, no. 7, pp. 25–33. doi 10.1111/ 1574-6968.12613
Ramu, H., Mankin, A., and Vazquez-Laslop, N., Mol. Microbiol., 2009, vol. 71, no. 4, pp. 811–824.
Vazquez-Laslop, N., Ramu, H., Klepacki, D., Kannan, K., and Mankin, A.S., EMBO J., 2010, vol. 29, no. 18, pp. 3108–3117.
Gupta, P., Liu, B., Klepacki, D., Gupta, V., Schulten, K., Mankin, A.S., and Vazquez-Laslop, N., Nat. Chem. Biol., 2016, vol. 12, no. 3, pp. 153–158.
Weisblum, B., Antimicrob. Agents Chemother., 1995, vol. 39, no. 3, pp. 577–585.
Min, Y.H., Kwon, A.R., Yoon, E.J., Shim, M.J., and Choi, E.C., Antimicrob. Agents Chemother., 2008, vol. 52, no. 5, pp. 1782–1789.
Tu, D., Blaha, G., Moore, P.B., and Steitz, T.A., Cell, 2005, vol. 121, no. 2, pp. 257–270.
Schlunzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R., Yonath, A., and Franceschi, F., Nature, 2001, vol. 413, no. 6858, pp. 814–821.
Schmitt, E., Galimand, M., Panvert, M., Courvalin, P., and Mechulam, Y., J. Mol. Biol., 2009, vol. 388, no. 3, pp. 570–582.
Jana, S. and Deb, J.K., Appl. Microbiol. Biotechnol., 2006, vol. 70, no. 2, pp. 140–150.
Vinella, D., D’Ari, R., Jaffe, A., and Bouloc, P., EMBO J., 1992, vol. 11, no. 4, pp. 1493–1501.
Kaldalu, N., Mei, R., and Lewis, K., Antimicrob. Agents Chemother., 2004, vol. 48, no. 3, pp. 890–896.
Costanzo, A. and Ades, S.E., J. Bacteriol., 2006, vol. 188, no. 13, pp. 4627–4634.
Amato, S.M. and Brynildsen, M.P., Curr. Biol., 2015, vol. 25, no. 16, pp. 2090–2098.
Piskunova, J., Maisonneuve, E., Germain, E., Gerdes, K., and Severinov, K., Mol. Microbiol., 2017, vol. 104, no. 3, pp. 463–471.
Pomares, M.F., Vincent, P.A., Farias, R.N., and Salomon, R.A., J. Bacteriol., 2008, vol. 190, no. 12, pp. 4328–4334.
Viducic, D., Ono, T., Murakami, K., Susilowati, H., Kayama, S., Hirota, K., and Miyake, Y., Microbiol. Immunol., 2006, vol. 50, no. 4, pp. 349–357.
Foti, J.J., Schienda, J., Sutera, V.A., and Lovett, S.T., Mol. Cell, 2005, vol. 17, no. 4, pp. 549–560.
Fung, D.K.C., Chan, E.W.C., Chin, M.L., and Chan, R.C.Y., Antimicrob. Agents Chemother., 2010, vol. 54, no. 3, pp. 1082–1093.
Butala, M., Zgur-Bertok, D., and Busby, S.J., Cell Mol. Life. Sci., 2009, vol. 66, no. 1, pp. 82–93.
Unoson, C. and Wagner, E.G.H., Mol. Microbiol., 2008, vol. 70, no. 1, pp. 258–270.
Noor, R., Murata, M., and Yamada, M., J. Mol. Microbiol. Biotechnol., 2009, vol. 17, no. 9, pp. 177–187.
Cheng, G., Hao, H., Dai, M., Liu, Z., and Yuan, Z., Eur. J. Med. Chem., 2013, vol. 66, no. 8, pp. 555–562.
Blazquez, J., Couce, A., Rodriguez-Beltran, J., and Rodriguez-Rojas, A., Curr. Opin. Microbiol., 2012, vol. 15, no. 5, pp. 561–569.
Little, J.W., Regulation of Gene Expression in Escherichia coli, Lin, E.C. and Lynch, A.S., Eds., Georgetown: R.G. Landes Co., 1996, pp. 453–479.
Baharoglu, Z. and Mazel, D., FEMS Microbiol. Rev., 2014, vol. 38, no. 6, pp. 1126–1145.
Courcelle, J., Khodursky, A., Peter, B., Brown, P.O., and Hanawalt, P.C., Genetics, 2001, vol. 158, no. 1, pp. 41–64.
Erill, I., Campoy, S., and Barbe, J., FEMS Microbiol. Rev., 2007, vol. 31, no. 6, pp. 637–656.
Rastogi, R.P., Richa, KumarA., Tyagi, M.B., and Sinha, R.P., J. Nucleic Acids, 2010, vol. 2010, no. 12, p. 592980. doi 10.4061/2010/592980
Mukherjee, A., Cao, C., and Lutkenhaus, J., Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, no. 6, pp. 2885–2890.
Kim, H.K. and Harshey, R.M., MBio, 2016, vol. 7, no. 4. doi 10.1128/mBio.00822-1610.1128/ mBio.00822-16
Jonas, K., Curr. Opin. Microbiol., 2014, vol. 18, no. 4, pp. 54–60.
Drlica, K., Malik, M., Kerns, R.J., and Zhao, X., Antimicrob. Agents Chemother., 2008, vol. 52, no. 2, pp. 385–392.
Malik, M., Mustaev, A., Schwanz, H.A., Luan, G., Shah, N., Oppegard, L.M., de Souza, E.C., Hiasa, H., Zhao, X., Kerns, R.J., and Drlica, K., Nucleic Acids Res., 2016, vol. 44, no. 7, pp. 3304–3316.
Mustaev, A., Malik, M., Zhao, X., Kurepina, N., Luan, G., Oppegard, L.M., Hiasa, H., Marks, K.R., Kerns, R.J., Berger, J.M., and Drlica, K., J. Biol. Chem., 2014, vol. 289, no. 18, pp. 12300–12312.
Malik, M., Zhao, X., and Drlica, K., Mol. Microbiol., 2006, vol. 61, no. 3, pp. 810–825.
Cambridge, J., Blinkova, A., Magnan, D., Bates, D., and Walker, J.R., J. Bacteriol., 2014, vol. 196, no. 1, pp. 36–49.
Pohlhaus, J.R. and Kreuzer, K.N., Mol. Microbiol., 2005, vol. 56, no. 6, pp. 1416–1429.
Dwyer, D.J., Kohanski, M.A., Hayete, B., and Collins, J.J., Mol. Syst. Biol., 2007, vol. 3, no. 91, pp. 1–15.
Didier, J.P., Villet, R., Huggler, E., Lew, D.P., Hooper, D.C., Kelley, W.L., and Vaudaux, P., Antimicrob. Agents Chemother., 2011, vol. 55, no. 5, pp. 1946–1952.
Hughes, D. and Andersson, D.I., Curr. Opin. Microbiol., 2012, vol. 15, no. 5, pp. 555–560.
Plata, K.B., Riosa, S., Singh, C.R., Rosato, R.R., and Rosato, A.E., PLoS One, 2013, vol. 8, no. 4, p. e61083.
Pogliano, J., Pogliano, K., Weiss, D.A., Losick, R., and Beckwith, J., Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, no. 2, pp. 559–564.
Nguyen-Disteche, M.F., Fraipont, C.F., Buddelmeijer, N.F., and Nanninga, N., Cell Mol. Life. Sci., 1998, vol. 54, no. 4, pp. 309–316.
Sauvage, E., Derouaux, A., Fraipont, C., Joris, M., Herman, R., Rocaboy, M., Schloesser, M., Dumas, J., Kerff, F., Nguyen-Disteche, M., and Charlier, P., PLoS One, 2014, vol. 9, no. 5, p. e98042. doi 10.1371/ journal.pone.0098042
Baharoglu, Z., Krin, E., and Mazel, D., PLoS Genet., 2013, vol. 9, no. 4, p. e1003421. doi 10.1371/journal. pgen.1003421
Baharoglu, Z., Bikard, D., and Mazel, D., PLoS Genet., 2010, vol. 6, no. 10, p. e1001165. doi 10.1371/ journal.pgen.1001165
Alam, M.K., Alhhazmi, A., DeCoteau, J.F., Luo, Y., and Geyer, C.R., Cell Chem. Biol., 2016, vol. 23, no. 3, pp. 381–391.
Baharoglu, Z., Babosan, A., and Mazel, D., Nucleic Acids Res., 2014, vol. 42, no. 4, pp. 2366–2379.
Dorr, T., Vulic, M., and Lewis, K., PLoS Biol., 2010, vol. 8, no. 2, p. e1000317. doi 10.1371/journal. pbio.1000317
Kimsey, H.H. and Waldor, M.K., J. Bacteriol., 2009, vol. 191, no. 22, pp. 6788–6795.
Gotoh, H., Kasaraneni, N., Devineni, N., Dallo, S.F., and Weitao, T., Biofouling, 2010, vol. 26, no. 5, pp. 603–611.
Baharoglu, Z. and Mazel, D., Antimicrob. Agents Chemother., 2011, vol. 55, no. 5, pp. 2438–2441.
Merrikh, H., Ferrazzoli, A.E., Bougdour, A., Olivier-Mason, A., and Lovett, S.T., Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 611–616.
Hocquet, D. and Bertrand, X., J. Antimicrob. Chemother., 2014, vol. 69, no. 3, pp. 852–854.
Weber, H., Polen, T., Heuveling, J., Wendisch, V.F., and Hengge, R., J. Bacteriol., 2005, vol. 187, no. 5, pp. 1591–1603.
Schellhorn, H.E., Future Microbiol., 2014, vol. 9, no. 4, pp. 497–507.
Hengge-Aronis, R., J. Mol. Microbiol. Biotechnol., 2002, vol. 4, no. 3, pp. 341–346.
Dong, T. and Schellhorn, H., Mol. Genet. Genomics, 2009, vol. 281, no. 1, pp. 19–33.
Dong, T., Kirchhof, M.G., and Schellhorn, H.E., Mol. Genet. Genomics, 2008, vol. 279, no. 3, pp. 267–277.
Landini, P., Egli, T., Wolf, J., and Lacour, S., Environ. Microbiol. Rep., 2014, vol. 6, no. 1, pp. 1–13.
Ishihama, A., FEMS Microbiol. Rev., 2010, vol. 34, no. 5, pp. 628–645.
Battesti, A., Majdalani, N., and Gottesman, S., Annu. Rev. Microbiol., 2011, vol. 65, pp. 189–213.
Nikel, P.I., Chavarria, M., Martinez-Garcia, E., Taylor, A.C., and de Lorenzo, V., Microb. Cell Fact., 2013, vol. 12, no. 50, pp. 1–14.
Shiba, T., Tsutsumi, K., Yano, H., Ihara, Y., Kameda, A., Tanaka, K., Takahashi, H., Munekata, M., Rao, N.N., and Kornberg, A., Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, no. 21, pp. 11210–11215.
Wurm, P., Tutz, S., Mutsam, B., Vorkapic, D., Heyne, B., Grabner, C., Kleewein, K., Halscheidt, A., Schild, S., and Reidl, J., Int. J. Med. Microbiol., 2017, vol. 307, no. 3, pp. 154–165.
Micevski, D., Zammit, J.E., Truscott, K.N., and Dougan, D.A., Front. Mol. Biosci., 2015, vol. 2, no. 15, pp. 1–10.
Jishage, M., Kvint, K., Shingler, V., and Nystrom, T., Genes Dev., 2002, vol. 16, no. 10, pp. 1260–1270.
Costanzo, A., Nicoloff, H.U., Barchinger, S.E., Banta, A.B., Gourse, R.L., and Ades, S.E., Mol. Microbiol., 2008, vol. 67, no. 3, pp. 619–632.
Bougdour, A. and Gottesman, S., Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 31, pp. 12896–12901.
Battesti, A., Majdalani, N., and Gottesman, S., Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 16, pp. 5159–5164.
Battesti, A., Tsegaye, Y.M., Packer, D.G., Majdalani, N., and Gottesman, S., J. Bacteriol., 2012, vol. 194, no. 12, pp. 2470–2478.
Merrikh, H., Ferrazzoli, A.E., and Lovett, S.T., J. Bacteriol., 2009, vol. 191, no. 24, pp. 7436–7446.
Demple, B., Johnson, A., and Fung, D., Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 83, no. 20, pp. 7731–7735.
Gutierrez, A., Laureti, L., Crussard, S., Abida, H., Rodriguez-Rojas, A., Blazquez, J., Baharoglu, Z., Mazel, D., Darfeuille, F., Vogel, J., and Matic, I., Nat. Commun, 2013, vol. 4, no. 3, pp. 1–9. doi 10.1038/ ncomms2607
Deng, D., Phan, M., Sharma, A., and Sharma, M., J. Exp. Microbiol. Immunol., 2013, vol. 17, no. 4, pp. 55–59.
Adnan, M., Morton, G., Singh, J., and Hadi, S., Mol. Cell Biochem., 2010, vol. 342, nos. 1–2, pp. 207–213.
Hryckowian, A.J., Battesti, A., Lemke, J.J., Meyer, Z.C., and Welch, R.A., MBio, 2014, vol. 5, no. 3, p. e01043–14. doi 10.1128/mBio.01043-14
Radzikowski, J.L., Vedelaar, S., Siegel, D., Ortega, A.D., Schmidt, A., and Heinemann, M., Mol. Syst. Biol., vol. 12, no. 9, pp. 1–18. doi 10.15252/ msb.20166998
Allison, K.R., Brynildsen, M.P., and Collins, J.J., Curr. Opin. Microbiol., 2011, vol. 14, no. 5, pp. 593–598.
Gefen, O. and Balaban, N.Q., FEMS Microbiol. Rev., 2009, vol. 33, nos. 1574-6976, pp. 704–717. doi 10.1111/j.1574-6976.2008.00156.x
Kim, J.-S. and Wood, T.K., Front. Microbiol., 2016, vol. 7, no. 2134. doi 10.3389/fmicb.2016.02134
Kaldalu, N., Hauryliuk, V., and Tenson, T., Appl. Microbiol. Biotechnol., 2016, vol. 100, no. 15, pp. 6545–6553.
Wu, N., He, L., Cui, P., Wang, W., Yuan, Y., Liu, S., Xu, T., Zhang, S., Wu, J., Zhang, W., and Zhang, Y., Front. Microbiol., 2015, vol. 6, no. 01003, pp. 1–11. doi 10.3389/fmicb.2015.01003
Casadesus, J. and Low, D.A., J. Biol. Chem., 2013, vol. 288, no. 20, pp. 13929–13935.
Wood, T.K., Knabel, S.J., and Kwan, B.W., Appl. Environ. Microbiol., 2013, vol. 79, no. 23, pp. 7116–7121.
Feng, J., Kessler, D.A., Ben-Jacob, E., and Levine, H., Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 1, pp. 544–549.
Germain, E., Roghanian, M., Gerdes, K., and Maisonneuve, E., Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 16, pp. 5171–5176.
Levin-Reisman, I. and Balaban, N., in Bacterial Persistence. Quantitative Measurements of Type I and Type II Persisters using ScanLag, Michiels, J. and Fauvart, M., Eds., New York: Springer, 2016, pp. 75–81.
de Jong, I.G., Haccou, P., and Kuipers, O.P., BioEssays, 2011, vol. 33, no. 3, pp. 215–223.
Page, R. and Peti, W., Nat. Chem. Biol., 2016, vol. 12, no. 4, pp. 208–214.
Demidenok, O.I., Kaprelyants, A.S., and Goncharenko, A.V., FEMS Microbiol. Letts., 2014, vol. 352, no. 1, pp. 69–77.
Schumacher, M.A., Balani, P., Min, J., Chinnam, N.B., Hansen, S., Vulic, M., Lewis, K., and Brennan, R.G., Nature, 2015, vol. 524, no. 7563, pp. 59–64.
Maisonneuve, E., Shakespeare, L.J., Jorgensen, M.G., and Gerdes, K., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 32, pp. 13206–13211.
Kuroda, A., Murphy, H., Cashel, M., and Kornberg, A., J. Biol. Chem., 1997, vol. 272, no. 34, pp. 21240–21243.
Hansen, S., Vulic, M., Min, J., Yen, T.J., Schumacher, M.A., Brennan, R.G., and Lewis, K., PLoS One, 2012, vol. 7, no. 6, p. e39185. doi 10.1371/journal. pone.0039185
Monack, D.M., Mueller, A., and Falkow, S., Nat. Rev. Microbiol., 2004, vol. 2, no. 9, pp. 747–765.
Kim, J., Park, C., Imlay, J.A., and Park, W., J. Biol. Chem., 2017, vol. 292, no. 1, pp. 121–133.
Heo, A., Jang, H.J., Sung, J.S., and Park, W., PLoS One, 2014, vol. 9, no. 10, p. e110215. doi 10.1371/journal. pone.0110215
Gupta, V., Garg, R., Garg, S., Chander, J., and Attri, A.K., Ann. Burns Fire Disasters, 2013, vol. 26, no. 4, pp. 189–192.
Kindrachuk, K.N., Fernandez, L., Bains, M., and Hancock, R.E., Antimicrob. Agents Chemother., 2011, vol. 55, no. 5, pp. 1874–1882.
Sharma, R., Arya, S., Patil, S.D., Sharma, A., Jain, P.K., Navani, N.K., and Pathania, R., PLoS One, 2014, vol. 9, no. 4, p. e93833. doi 10.1371/journal. pone.0093833
Bergh, B., Michiels, J.E., Wenseleers, T., Windels, E.M., Boer, P.V., Kestemont, D., De Meester, L., Verstrepen, K.J., Verstraeten, N., Fauvart, M., and Michiels, J., Nat. Microbiol., 2016, vol. 1, no. 5, pp. 1–7. doi 10.1038/nmicrobiol.2016.20
Fridman, O., Goldberg, A., Ronin, I., Shoresh, N., and Balaban, N.Q., Nature, 2014, vol. 513, no. 7518, pp. 418–421.
Cohen, N.R., Lobritz, M.A., and Collins, J.J., Cell Host Microbe, 2013, vol. 13, no. 6, pp. 632–642.
Baym, M., Lieberman, T.D., Kelsic, E.D., Chait, R., Gross, R., Yelin, I., and Kishony, R., Science, 2016, vol. 353, no. 6304, pp. 1147–1151.
Lee, H.H., Molla, M.N., Cantor, C.R., and Collins, J.J., Nature, 2010, vol. 467, no. 7311, pp. 82–85.
Conlon, B.P., Nakayasu, E.S., Fleck, L.E., LaFleur, M.D., Isabella, V.M., Coleman, K., Leonard, S.N., Smith, R.D., Adkins, J.N., and Lewis, K., Nature, 2013, vol. 503, no. 7476, pp. 365–370.
Orman, M.A. and Brynildsen, M.P., Free Radic. Biol. Med., 2016, vol. 93, no. 4, pp. 145–154. doi 10.1016/ j.freeradbiomed.2016.02.003
Agostinelli, E., Marques, M.P., Calheiros, R., Gil, F.P., Tempera, G., Viceconte, N., Battaglia, V., Grancara, S., and Toninello, A., Amino Acids, 2010, vol. 38, no. 2, pp. 393–403.
Rhee, H.J., Kim, E.J., and Lee, J.K., J. Cellular Mol. Med., 2007, vol. 11, no. 4, pp. 685–703.
Miller-Fleming, L., Olin-Sandoval, V., Campbell, K., and Ralser, M., J. Mol. Biol., 2015, vol. 427, no. 21, pp. 3389–3406.
Igarashi, K. and Kashiwagi, K., Biochem. J., 1999, vol. 344, no. 3, pp. 633–642.
Shah, P. and Swiatlo, E., Mol. Microbiol., 2008, vol. 68, no. 1, pp. 4–16.
Tkachenko, A.G., Rosenblat, G.F., Chudinov, A.A., and Raev, M.B., Curr. Microbiol., 1991, vol. 22, no. 3, pp. 151–153.
Tkachenko, A.G. and Chudinov, A.A., Curr. Microbiol., 1994, vol. 28, no. 2, pp. 81–83.
Tkachenko, A.G. and Chudinov, A.A., Mikrobiologiya, 1990, vol. 59, no. 1, pp. 12–18.
Tkachenko, A.G., Mikrobiologiya, 1990, vol. 59, no. 2, pp. 197–204.
Tkachenko, A.G., Rozenblat, G.F., and Chudinov, A.A., Prikl. Biokhim. Mikrobiol., 1991, vol. 27, no. 4, pp. 558–564.
Geiger, L.E. and Morris, D.R., J. Bacteriol., 1980, vol. 141, no. 3, pp. 1192–1198.
Agostinelli, E., Tempera, G., Viceconte, N., Saccoccio, S., Battaglia, V., Grancara, S., Toninello, A., and Stevanato, R., Amino Acids, 2010, vol. 38, no. 2, pp. 353–368.
Igarashi, K. and Kashiwagi, K., Biochem. Biophys. Res. Commun., 2000, vol. 271, no. 3, pp. 559–564.
Miyamoto, S., Kashiwagi, K., Ito, K., Watanabe, S., and Igarashi, K., Arch. Biochem. Biophys., vol. 300, no. 1, pp. 63–68.
Igarashi, K. and Kashiwagi, K., IUBMB Life, 2015, vol. 67, no. 3, pp. 160–169.
Tkachenko, A.G., Pshenichnov, M.R., Salakhetdinova, O., and Nesterova, L.Yu., Microbiology (Moscow), 1998, vol. 67, no. 5, pp. 494–498.
Tkachenko, A.G., Pshenichnov, M.R., Salakhetdinova, O.Ya.Ya., and Nesterova, L.Yu., Microbiology (Moscow), 1999, vol. 68, no. 1, pp. 21–25.
Yoshida, M., Meksuriyen, D., Kashiwagi, K., Kawai, G., and Igarashi, K., J. Biol. Chem., 1999, vol. 274, no. 32, pp. 22723–22728.
Amarantos, I., Zarkadis, I.K., and Kalpaxis, D.L., Nucleic Acids Res., 2002, vol. 30, no. 13, pp. 2832–2843.
Igarashi, K. and Kashiwagi, K., J. Biochem., 2006, vol. 139, no. 1, pp. 11–16.
Tkachenko, A.G., Nesterova, L.Yu., and Pshenichnov, M.R., Microbiology (Moscow), 2001, vol. 70, no. 4, pp. 422–428.
Tkachenko, A. and Fedotova, M.V., Biochemistry (Moscow), 2007, vol. 72, no. 1, pp. 109–116.
Tkachenko, A.G. and Nesterova, L.Yu., Biochemistry (Moscow), 2003, vol. 68, no. 8, pp. 850–856.
Tkachenko, A.G., Shumkov, M.S., and Akhova, A.V., Biochemistry (Moscow), 2006, vol. 71, no. 2, pp. 185–193.
Martin, R.G. and Rosner, J.L., Mol. Microbiol., 2002, vol. 44, no. 6, pp. 1611–1624.
Samartzidou, H. and Delcour, A.H., J. Bacteriol., 1999, vol. 181, no. 3, pp. 791–798.
Samartzidou, H., Mehrazin, M., Xu, Z.H., Benedik, M.J., and Delcour, A.H., J. Bacteriol., 2003, vol. 185, no. 1, pp. 13–19.
Akhova, A.V. and Tkachenko, A.G., Microbiology (Moscow), 2009, vol. 78, no. 5, pp. 575–579.
Yoshida, H. and Wada, A., Wiley Interdiscip Rev. RNA, 2014, vol. 5, no. 5, pp. 723–732.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.G. Tkachenko, 2018, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2018, Vol. 54, No. 2, pp. 110–133.
Rights and permissions
About this article
Cite this article
Tkachenko, A.G. Stress Responses of Bacterial Cells as Mechanism of Development of Antibiotic Tolerance (Review). Appl Biochem Microbiol 54, 108–127 (2018). https://doi.org/10.1134/S0003683818020114
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0003683818020114


