Skip to main content
Log in

Melanin-Mediated Synthesis of Silver Nanoparticles and Their Affinity Towards Tyrosinase

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The bacterial strain Pseudomonas sp. SSA has capacity to produce extracellular melanin that sequesters heavy metals. The brown-black melanin pigment was observed in the culture liquid and mediated synthesis of silver nanoparticles (AgNPs). The AgNPs were characterized using UV–visible, dynamic light scattering, energy dispersive X-ray, Fourier transform infrared and surface plasmon resonance spectroscopy, scanning electron and transmission electron microscopy and selected area electron diffraction analysis. The synthesized nanoparticles were found to be spherical in shape with size in the range of 14–30 nm and showed high antimicrobial activity against pathogenic bacteria and fungi. These nanoparticles revealed binding affinity towards fungal and human tyrosinases with KD 4.601 × 10–10 and 2.816 × 10–5 M, respectively. In addition, produced nanoparticles did not show any toxic effect towards HeLa cells up to 20 μg/mL. These nanoparticles could find application in medicine and cosmetics due to their enzyme inhibition and antimicrobial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S.R., Muniyandi, J., et al., Colloids Surf. B Biointerfaces, 2009, vol. 74, no. 1, pp. 328–335.

    Article  CAS  PubMed  Google Scholar 

  2. Gopinath, V. and Velusamy, P., Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2013, vol. 106, pp.170–174.

    Article  CAS  Google Scholar 

  3. Rai, M., Yadav, A., and Gade, A., Biotechnol. Adv., 2009, vol. 27, no. 1, pp. 76–83.

    Article  CAS  PubMed  Google Scholar 

  4. Jain, J., Arora, S., Rajwade, J.M., Omray, P., Khandelwal S., and Paknikar K.M, Mol. Pharm., 2009, vol. 6, no. 5, pp.1388–1401.

    Article  CAS  PubMed  Google Scholar 

  5. Ravindra, S., Mohan, Y.M., Reddy, N.N., and Raju, K.M., Colloids Surf. A., 2010, vol. 367, no. 1, pp. 31–40.

    Article  CAS  Google Scholar 

  6. Otari, S.V., Patil, R.M., Waghmare, S.R., Ghosh, S.J., and Pawar, S.H., Dalton Trans., 2013, vol. 42, no. 27, pp. 9966–9975.

    Article  CAS  PubMed  Google Scholar 

  7. Hamilton, A.J. and Gomez, B.L., J. Med. Microbiol., 2002, vol. 51, pp. 189–191.

    Article  CAS  PubMed  Google Scholar 

  8. Commoner, B., Townsend, J., and Pike, G.E., Nature, 1954, vol. 174, no. 4432, pp. 689–691.

    Article  CAS  PubMed  Google Scholar 

  9. Doering, T.L., Nosanchuk, J.D., Roberts, W.K., and Casadevall, A., Med Mycol., 1999, vol. 37, no. 3, pp. 175–181.

    Article  CAS  PubMed  Google Scholar 

  10. Ju, K.Y., Lee, Y., Lee, S., Park, S.B., and Lee, J.K., Biomacromolecules, 2011, vol. 12, no. 3, pp. 625–632.

    Article  CAS  PubMed  Google Scholar 

  11. Frases, S., Salazar, A., Dadachova, E., and Casadevall, A., Appl. Environ. Microbiol., 2007, vol. 73, no. 2, pp. 615–621.

    Article  CAS  PubMed  Google Scholar 

  12. Hoti, L., and Balaraman, K., J. Gen. Microbiol., 1993, vol. 139, no. 10, pp. 2365–2369.

    Article  CAS  PubMed  Google Scholar 

  13. Shrishailnath, S., Kulkarni, G., Yaligara, V., Kyoung, L., and Karegoudar, T.B., J. Microbiol. Biotechnol., 2010, vol. 20, no. 11, pp.1513–1520.

    Article  Google Scholar 

  14. Gibson, L.F. and George, A.M., FEMS Microbiol. Lett., 1998, vol. 16, no. 2, pp. 261–268.

    Article  Google Scholar 

  15. Agodi, A., Stefani, S., Corsaro, C., Campanile, F., Gribaldo, S., and Sichel, G., Res. Microbiol., 1996, vol. 147, no. 3, pp.167–174.

    Article  CAS  PubMed  Google Scholar 

  16. Ivins, B.E. and Holmes, R.K., Infect. Immun., 1981, vol. 34, no. 3, pp. 895–899.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lopez-Serrano, D., Solano, F., and Sanchez-Amat, A., Gene, 2004, vol. 342, no. 1, pp.179–187.

    Article  CAS  PubMed  Google Scholar 

  18. Plonka, P.M. and Grabacka, M., Acta Biochim. Polonica, 2006, vol. 53, no. 3, pp. 429–443.

    CAS  Google Scholar 

  19. Tarangini, K. and Mishra, S., Res. J. Eng. Sci., 2013, vol. 2, no. 5, pp. 40–46.

    Google Scholar 

  20. Surwase, S.N., Jadhav, S.B., Phugare, S.S., and Jadhav, J.P., Biotech., 2012, vol. 3, no. 3, pp. 187–194.

    Google Scholar 

  21. Apte, M., Sambre, D., Gaikawad, S., Joshi, S., Bankar, A., RaviKumar, A., and Zinjarde, S., AMB Express, 2013, vol. 3, pp. 1–32.

    Article  Google Scholar 

  22. Apte, M., Girme, G., Bankar, A., RaviKumar, A., and Zinjarde, S., J. Nanobiotech., 2013, vol. 11, pp. 2–9.

    Article  CAS  Google Scholar 

  23. Patil, S.A., Surwase, S.N., Jadhav, S.B., and Jadhav, J.P., Biochem. Eng. J., 2013, vol. 74, pp. 36–45.

    Article  CAS  Google Scholar 

  24. Patil, S.A., Sistla, S., and Jadhav, J.P., Int. J. Biol. Macromol., 2014, vol. 65, pp. 163–166.

    Article  CAS  PubMed  Google Scholar 

  25. Ganesh Babu, M.M., and Gunasekaran, P., Colloids Surf. B Biointerfaces, 2009, vol. 74, no. 1, pp. 191–195.

    Article  CAS  PubMed  Google Scholar 

  26. Bankar, A.V., Joshi, B.S., Kumar, A.R., and Zinjarde, S.S., Colloids Surf A: Physicochem. Eng. Aspects, 2010, vol. 368, nos. 1–3, pp. 58–63.

    Article  CAS  Google Scholar 

  27. Tu, Y., Sun, Y., Tian, Y., Xie, M., and Chen, J., Food Chem., 2009, vol. 114, pp. 1345–1350.

    Article  CAS  Google Scholar 

  28. Fayaz, A.M., Balaji, K., Girilal, M., and Venketesan, K.R., Biogenic Nanomed. Nanotechnol. Biol. Med., 2010, vol. 6, no. 1, pp. 103–109.

    Article  CAS  Google Scholar 

  29. Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., et al., J. Phys. Chem. B., 2006, vol. 110, no. 33, pp.16248–16253.

    Article  CAS  PubMed  Google Scholar 

  30. Li, P., Li, J., Wu, C., Wu, Q., and Li, J., Nanotechnology, 2005, vol. 16, no. 9, pp. 1912–1917.

    Article  CAS  Google Scholar 

  31. Sondi, I. and Salopek-Sondi, B., J. Colloid Interface Sci., 2004, vol. 275, no. 1, pp. 177–182.

    Article  CAS  PubMed  Google Scholar 

  32. Horak, V. and Gillette, J.R., Mol. Pharmacol., 1971, vol. 7, no. 4, pp. 429–433.

    CAS  PubMed  Google Scholar 

  33. Sivaraman, S.K., Elango, I., Kumar, S., and Santhanam, V., Curr. Sci., 2009, vol. 97, no. 7, pp. 1055–1059.

    CAS  Google Scholar 

  34. Carreira, A., Paloma, L., and Loureiro, V., Int. J. Food Microbiol., 1998, vol. 41, no. 3, pp. 223–230.

    Article  CAS  PubMed  Google Scholar 

  35. Kokura, S., Handa, O., Takagi, T., Ishikawa, T., Naito, Y., and Yoshikawa, T., Nanomedicine, 2010, vol. 6. no. 4, pp. 570–574.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jadhav.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S., Sistla, S., Bapat, V. et al. Melanin-Mediated Synthesis of Silver Nanoparticles and Their Affinity Towards Tyrosinase. Appl Biochem Microbiol 54, 163–172 (2018). https://doi.org/10.1134/S0003683818020096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818020096

Keywords

Navigation