Skip to main content
Log in

Catalytic Properties of Lipase Entrapped as Lysates of Recombinant Strain-Producer rEscherichia coli/lip into Nanocarbon-in-Silica Composites in the Bioconversion of Triglycerides and Fatty Acids

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Composite multi-component biocatalysts were prepared by entrapping lysates of a recombinant rE. coli/lip strain producing Thermomyces lanuginosus lipase into composite nanocarbon-containing matrices based on a SiO2 xerogel. The dependence of the lipase activity and operational stability on the type of the carbon component (nanotubes or nanospheres of different diameters) was studied in the bioconversion of triglycerides (hydrolysis and interesterification), as well as in the esterification of saturated fatty acids—namely, butyric (C4:0), capric (C10:0), and stearic (C18:0) acids—with isoamyl alcohol. It was shown that the biocatalytic properties were determined by both the texture parameters of the nanostructured carbon included and the type of enzymatic reaction performed. Biocatalysts without a nanocarbon component had the highest operational stability in the batch process of interesterification of sunflower oil with ethyl acetate; the half-life time was found to be 720 h at 40°C. Biocatalysts containing carbon nanotubes of ~21 nm in diameter were five to six times more active in the batch esterification process than biocatalysts without a nanocarbon component. Biocatalysts containing carbon nanotubes catalyzed the synthesis of esters in a binary organic solvent (hexane and diethyl ether) without a loss of activity for more than 500 h at 40°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ignatova, L.G., Kochetkova, A.A., Nechaev, A.P., and Tutel’yan, V.A., Zhirovye produkty dlya zdorovogo pitaniya (Fat Products for a Healthy Diet), Moscow: DeLi Print, 2009.

    Google Scholar 

  2. Zaitseva, M.E., Pishch. Prom., 2011, no. 1, pp. 22–25.

    Google Scholar 

  3. Markov, V.A., Devyanin, S.N., and Semenov, V.G., Ispol’zovanie rastitel’nykh masel i topliv na ikh osnove v dizel’nykh dvigatelyakh (Use of Vegetable Oils and Fuels Based on Them in Diesel Engines), Moscow: Inzhener: Oniko-M, 2011.

    Google Scholar 

  4. Stoytcheva, M., Montero, G., Toscano, L., Gochev, V., and Valdez, B., Biodiesel, Feedstocks and Processing Technologies, InTech, 2011.

    Book  Google Scholar 

  5. Hou, C.T., Handbook of Industrial Catalysis, Boca Raton: CRC Press Taylor and Francis Group, 2005.

    Google Scholar 

  6. Bezborodov, A.M. and Zagustina, N.A., Appl. Biochem. Microbiol., 2014, vol. 50, no. 4, pp. 313–337.

    Article  CAS  Google Scholar 

  7. Zi Jin, Shuang-Yan Han, Li Zhang, Sui-Ping Zheng, Yong Wang, and Ying Lin, Bioresour. Technol., 2013, vol. 130, no. 1, pp. 102–109.

    Article  CAS  PubMed  Google Scholar 

  8. Kovalenko, G.A., Perminova, L.V., Chuenko, T.V., and Rudina, N.A., Appl. Biochem. Microbiol., 2016, vol. 52, no. 6, pp. 582–588.

    Article  CAS  Google Scholar 

  9. Kovalenko, G.A., Beklemishev, A.B., Perminova, L.V., Mamaev, A.L., Rudina, N.A., Moseenkov, S.I., and Kuznetsov, V.L., J. Mol. Catal. B: Enzym., 2013, vol. 98, no. 1, pp. 78–86.

    Article  CAS  Google Scholar 

  10. Kovalenko, G.A., Beklemishev, A.B., Perminova, L.V., Chuenko, T.V., Mamaev, A.L., Ivanov, I.D., Moseenkov, S.I., and Kuznetsov, V.L., Appl. Biochem. Microbiol, 2013, vol. 49, no. 3, pp. 296–305.

    Article  CAS  Google Scholar 

  11. Kovalenko, G.A., Perminova, L.V., Beklemishev, A.B., and Tkachenko, V.I., Biotekhnologiya, 2013, no. 6, pp. 35–50.

    Google Scholar 

  12. Kovalenko, G.A., Perminova, L.V., Beklemishev, A.B., Yakovleva, E.Yu., and Pykhtina, M.B., Kataliz Promyshl., 2014, no. 6, pp. 71–79.

    Google Scholar 

  13. Hatfield, G.W. and Roth, D.A., Biotechnol. Annu. Rev., 2007, vol. 13, no. 1, pp. 27–42.

    Article  CAS  PubMed  Google Scholar 

  14. Bivona, L., Zou, Z., Stutzman, N., and Sun, P.D., Protein Expr. Purif., 2010, vol. 74, no. 2, pp. 248–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuznetsov, V.L., Krasnikov, D.V., Shmakov, A.N., and Elumeeva, K.V., Phys. Status Solidi (B): Basic Solid State Physics, 2012, vol. 249, no. 12, pp. 2390–2394.

    Article  CAS  Google Scholar 

  16. Su, E., Chzhan, Ts., Khuan, M., and Vei, D., Izv. Akad. Nauk, Ser. Khim., 2014, no. 12, pp. 2719–2728.

    Google Scholar 

  17. Naik, S., Basu, A., Saikia, R., Madan, B., Paul, P., Chaterjee, R., Brask, J., and Svendsen, A., J. Mol. Catal. B: Enzym., 2010, vol. 65, no. 1, pp. 18–23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kovalenko.

Additional information

Original Russian Text © L.V. Perminova, G.A. Kovalenko, A.B. Beklemishev, A.L. Mamaev, M.B. Pykhtina, N.A. Rudina, 2018, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2018, Vol. 54, No. 1, pp. 46–54.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perminova, L.V., Kovalenko, G.A., Beklemishev, A.B. et al. Catalytic Properties of Lipase Entrapped as Lysates of Recombinant Strain-Producer rEscherichia coli/lip into Nanocarbon-in-Silica Composites in the Bioconversion of Triglycerides and Fatty Acids. Appl Biochem Microbiol 54, 38–44 (2018). https://doi.org/10.1134/S000368381801009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368381801009X

Keywords

Navigation