Skip to main content
Log in

Microbial Electrosynthesis

  • Problems, Prospects
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Electrobiosynthesis conducted by microorganisms represents a new technology with great potential. This review considers mechanisms of direct electron transfer from cathode to bacterial cell and a number of anaerobic processes catalyzed with such transport: the biosynthesis of hydrogen, methane, and multicarbon compounds. The possibilities for the use of electrolysis hydrogen to grow hydrogen oxidizing bacteria are also considered, as well as some examples of electricity that influence the reductive and oxidative processes occurring during fermentation. Realization of the electric biosynthesis potential would require deep fundamental research on the mechanisms of extracellular electron transport and the coupling of electric and metabolic processes. Work would be required to reorganize microbial genomes to intensify their metabolism and broaden the repertoire of synthesized metabolites. Progress in these technologies would depend not only on improvements in microorganisms but also on the successful creation of effective biocompatible electrodes and the designing of highly productive reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BEAMR:

BioElectrochemically Assisted Microbial Reactor

BES:

BioElectrochemical System

EABs:

Electrochemically Active Biofilms

EET:

Electron Extracellular Transfer

MEC:

Microbial Electrolysis Cell

MFC:

Microbial Fuel Cell

WLP:

Wood-Ljungdahl Pathway.

References

  1. The relentless rise carbon dioxide—Climate Change— NASA. www.climate.nasa.gov/climateresourse/24.

  2. How solar energy could be largest source of electricity by mid-centry. www.iea.org./newsroomandevets/pressrelease/2014/september.

  3. Rabaey, K. and Rozendal, R.A., Microbial electro synthesis revisiting the electrical route for microbial production, Nat. Rev. Microbiol., 2010, vol. 8, pp. 706–716.

    Article  CAS  PubMed  Google Scholar 

  4. Lovley, D.R. and Nevin, K.P., Electro commodities powering microbial production of fuels and commodity chemicals from carbon dioxides with electricity, Curr. Opin. Biotechnol., 2013, vol. 24, pp. 385–390.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenbaum, M. and Henrich, A.W., Engineering microbial electrocatalysis for chemical and fuel production, Curr. Opin. Biotechnol., 2014, vol. 29, pp. 93–98.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y. and Angelidaki, I., Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges, Water Research, 2014, vol. 56, pp. 11–25.

    Article  CAS  PubMed  Google Scholar 

  7. Mohan, S.V., Velvizh, G., Krishna, K.V., and Babu, M.L., Microbial catalyzed electrochemical systems: a biofactory with multi–facet application, Bioresour. Technol., 2015, vol. 165, pp. 355–364.

    Article  CAS  Google Scholar 

  8. Rozendal, R.A., Hamelers, H.V.M., Rabaey, K., Keller, J., et al., Towards practical implementation of bioelectrochemical waste water treatment, Trends Biotechnol., 2008, vol. 26, pp. 450–459.

    Article  CAS  PubMed  Google Scholar 

  9. Logan, B.E., Hamelers, B., Rozendal, R.A., Schroder, U., et al., Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 2006, vol. 40, pp. 5181–5191.

    Article  CAS  PubMed  Google Scholar 

  10. Debabov, V.G., Electricity from microorganisms, Microbiology (Moscow), 2008, vol. 77, pp. 149–157.

    Article  CAS  Google Scholar 

  11. Wang, H., Park, J.D., and Ren, Z.J., Practical energy harvesting for microbial fuel cells: a review, Environ. Sci. Technol., 2015, vol. 49, pp. 3267–3277.

    Article  CAS  PubMed  Google Scholar 

  12. Mathuriya, A.S. and Yakhimi, J.V., Microbial fuel cells—application for generation electrical power and beyond, Crit. Rev. Micribiol., 2016, vol. 42, pp. 127–143.

    Article  CAS  Google Scholar 

  13. Logan, B.E., Scaling up microbial fuel cells and other bioelectrochemical systems, Appl. Microbiol. Biotechnol., 2010, vol. 85, pp. 1665–1671.

    Article  CAS  PubMed  Google Scholar 

  14. Li W.W., Sheng G.P. Microbial fuel cells in power generation and extended application, Adv. Biochem. Biotechnol., 2012, vol. 128, pp. 165–197.

    CAS  Google Scholar 

  15. Park D.H., Guetter M.V., Jain M.K., Zeikus J.G. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolic production, Appl. Environ. Microbiol., 1999, vol. 66, pp. 2912–2917.

    Google Scholar 

  16. Aulenta, F., Catervi, A., Majone, M., Rauero, S., et al., Electron transfer from a solid-state electrode assisted by methyl vilogen sustains efficient microbial reductive dechlorination of TCE, Sci. Technol., 2008, vol. 41, pp. 2554–2559.

    Article  CAS  Google Scholar 

  17. Rabaey, K., Boon, N., Hfe, M. and Verstraete, W., Microbial phenazine production enhance electron transfer in biofuel cells, Environ. Sci. Technol., 2005, vol. 39, pp. 3401–3408.

    Article  CAS  PubMed  Google Scholar 

  18. Marsil, E., Baron, D.B., Shikahare, I.D., Coursole, J.A., et al., Shewanella cecretes flavins that mediate extracellular electron transfer, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 3968–3973.

    Article  CAS  Google Scholar 

  19. Sydow, A., Krieg, T., Mayer, F., Schrader, S., et al., Electroactive bacteria—molecular mechanisms and genetic tools, Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 8481–8495.

    Article  CAS  PubMed  Google Scholar 

  20. Meyer, T.E., Tsapin, A.I., Vandenberghe, I., de Smet, L., et al., Identification 42 possible cytochrome C genes in the Shewanella oniedensis genome and characterization of six soluble cytochromes, OMICS, 2004, vol. 8, pp. 57–77.

    Article  CAS  PubMed  Google Scholar 

  21. Methe, B., Nelson, K.E., Eisen, J., Paulsen, I., et al., Genome of Geobacter sulfur reducers: metal reduction in subsurface environments, Science, 2003, vol. 302, pp.1967–1969.

    Article  CAS  PubMed  Google Scholar 

  22. Bücking, C., Schicklberger, M., and Gescher, J., The biochemistry of dissimilatory ferric ion and manganese reduction in Shewanella oniedensis, in Microbial Metal Respiration, Kappler, A. and Gescher, J., Eds., Berlin–Heidelberg: Springer Verlag, 2013, pp. 49–82.

    Chapter  Google Scholar 

  23. Levar, C., Rollefson, J., and Bond, D., Energetic and molecular constraints of the mechanism of environmental Fe (III) reduction by Geobacter, in Microbial Metal Respiration, Besher, J. and Kappler, A., Eds., Berlin–Heidelberg: Springer Verlag, 2013, pp. 29–48.

    Chapter  Google Scholar 

  24. Coursolle, D. and Gralnick, J.A., Modularity of the Mrt respiratory pathway of Shewanella oniedensis strain MR-1, Mol. Microbiol., 2010, vol. 77, pp. 995–1008.

    CAS  PubMed  Google Scholar 

  25. Ross, D.E., Flynn, J.M., Baron, D.B., et al., Towards electrosynthesis in Shewanella: energetics of reversing the Mrt pathway for reductive metabolism, PLoS One, 2011, vol. 6, no. 2, p. e16649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Strychar, S.M., Glaven, R.M., Coopi, M.V., et al., Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens, Bioelectrochemistry, 2011, vol. 80, pp. 142–150.

    Article  CAS  Google Scholar 

  27. Requera, G., Mc Carthy, K.D., Mehta, T., et al., Extra cellular electron transfer via microbial nanowires, Nature, 2005, vol. 435, pp. 1098–1101.

    Article  CAS  Google Scholar 

  28. Gorby, Y.A., Yanina, S., Mc Lean, J.S., et al., Electrically conductive bacterial nanowires produced by Shewanella oniedensis strain MR-1 and other microorganisms, Proc. Nat. Acad. Sci. U. S. A., 2006, vol. 103, pp. 11358–11363.

    Article  CAS  Google Scholar 

  29. Dohnalkova, A.C., Marshall, M.J., Arey, B.W., et al., Imaging hydrated microbial extra cellular polymers: comparative analysis by electron microscopy, Appl. Environ Microbiol., 2011, vol. 77, pp. 1254–1262.

    Article  CAS  PubMed  Google Scholar 

  30. Pirbadin, S., Barchinger, S.E., Leung, K.M., et al., Shewanella oniedensis MR-1 nanowires are out membrane and periplasmic extension of the extra cellular electron transport components, Proc. Nat. Acad. Sci. U. S. A., 2014, vol. 111, pp. 12883–12888.

    Article  CAS  Google Scholar 

  31. Polizzi, N.F., Skourtis, S.S., and Beratan, D.N., Physical constraints one charge transport through bacterial nanowires, Faraday Discuss., 2012, vol. 155, pp. 43–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Malvankar, N.S., Vargas, M., Nevin, K.P., et al., Tunable metallic-like conductivity in microbial nanowire networks, Nat. Nanotechnol., 2011, vol. 6, pp. 573–579.

    Article  PubMed  Google Scholar 

  33. Vargas, M., Malvankar, N.S., Tremblay, P.L., et al., Aromatic amino acids required for pile conductivity and long-range extra cellular electron transport in Geobacter sulfurreducens, MBio, 2013, vol. 4, p. e00105–13.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Malvankar, N.S., Vargas, M., Nevin, K.P, et al., Structural basis for metallic-like conductivity in microbial nanowires, MBio, 2016, vol. 6, no. 2, p. e00084.

    Google Scholar 

  35. Malvankar, N.S. and Lovley, D.R., Microbial nanowires for bioenergy application, Curr. Opin. Biotechnol., 2014, vol. 27, pp. 88–95.

    Article  CAS  PubMed  Google Scholar 

  36. Kato, S., Biotechnological aspects of microbial extra cellular electron transfer, Microbes Environ., 2015, vol. 30, pp. 133–139.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kracke, F., Vassilev, I., and Kramer, J., Microbial electron transport and energy conservation—the foundation for optimizing bioelectrochemical systems, Front. Microbiol., 2015, vol. 6, pp. 575–584.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rosenbaum, M., Auleneta, F., Villano, M., and Angenent, L.T., Catodes as electron donors for microbial metabolisms: which extra cellular electron transfer mechanisms are involved?, Bioresour. Technol. 2011, vol. 102, pp. 324–333.

    Article  CAS  PubMed  Google Scholar 

  39. Fricke, K., Harnisch, E., and Schroder, U., On the use of cyclic voltametry for the study of electron transfer in microbial fuel cells, Energy Environ. Sci., 2008, vol. 1, pp. 144–147.

    Article  CAS  Google Scholar 

  40. Marsili, E., Rollefson, J.B., Baron, D.B., et al., Microbial biofilm voltametry: direct electrochemical characterization of catalytic electrode-attached biofilms, Appl. Environ. Microbiol., 2008, vol. 74, pp. 7329–7337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Babauta, J., Renslow, R., Lewandowski, Z., and Begenal, H., Electrochemically active biofilms: facts and fiction, Biotechnol. Adv., 2012, vol. 28, pp. 789–812.

    CAS  Google Scholar 

  42. Lin, Y. and Bond, D.R., Long-distance electron transfer by Geobacter sulfurreducens biofilms results in accumulation of reduced C-type cytochromes, Chem. Sus. Chem., 2012, vol. 5, pp. 1047–1053.

    Article  CAS  Google Scholar 

  43. Jana, P.S., Katari, K., Kavangh, P., et al., Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of the film thickness, Phys. Chem., 2014, vol. 16, pp. 9039–9046.

    CAS  Google Scholar 

  44. Korth, B., Rosa, L.F.M., Harnisch, F., and Picioreann, C., A framework for modeling electro active microbial biofilms performing direct electron transfer, Bioelectrochemistry, 2015, vol. 106 (Pt. A), pp. 194–206.

    Article  CAS  PubMed  Google Scholar 

  45. Zhi, W., Ge, Z., He, Z., and Zhang, H., Methods for understanding microbial community structures and functions in microbial fuel cells: a review, Bioresour. Technol., 2014, vol. 171, pp. 461–468.

    Article  CAS  PubMed  Google Scholar 

  46. Erable, B., Duteanu, N.M., Ghangrekar, M.M., et al., Application of electro active biofilms, Biofouling, 2010, vol. 26, pp. 57–71.

    Article  CAS  PubMed  Google Scholar 

  47. Kalathil, S., Khan, M.M., Lee, J., and Cho, M.H., Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms, Biotechnol. Adv. 2013, vol. 31, pp. 915–924.

    Article  CAS  PubMed  Google Scholar 

  48. Bičaková, O. and Straka, P., Production of hydrogen from renewable resources and its effectives, Int. J. Hydrogen Energy, 2012, vol. 37, pp. 11563–11578.

    Article  CAS  Google Scholar 

  49. Ditzig, J., Lin, H., and Logan, B.E., Production of hydrogen from domestic wastewater using a bioelectrochemicaly assisted microbial reactor (BEAMR), Int. J. Hydrogen Energy, 2007, vol. 32, pp. 2296–2304.

    Article  CAS  Google Scholar 

  50. Esswain, A.S., Surendranath, Y., Reece, S.Y., and Nocera, D.G., Highly active cobalt phosphate and borate based oxygen evolving anodes operating in neutral and natural water, Energy Environ. Sci., 2011, vol. 4, pp. 499–504.

    Article  Google Scholar 

  51. Wrana, N., Sparling, R., Cicek, N., and Levin, D.B., Hydrogen gas production in microbial electrolysis cell by electrogenesis, J. Cleaner Production, 2011, vol. 18, pp. 105–111.

    Article  CAS  Google Scholar 

  52. Lee, M.Y., Kim, K.Y., Yang, E., and Kim, I.S., Evolution of hydrogen production and internal resistance in forward osmosis membrane integrated microbial electrolysis cells, Bioresour. Technol., 2015, vol. 187, pp. 106–112.

    Article  CAS  PubMed  Google Scholar 

  53. Call, D. and Logan, B.E., Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane, Environ. Sci. Technol., 2008, vol. 42, pp. 3401–3406.

    Article  CAS  PubMed  Google Scholar 

  54. Hu, H., Fan, Y., and Lin, H., Hydrogen production in a single chamber tubular microbial electrolysis cells using non-precious metal catalysis, Int. J. Hydrogen Energy, 2009, vol. 34, pp. 8535–8542.

    Article  CAS  Google Scholar 

  55. Rozendal, R.A., Yeremiasse, A.W., Hamelers, H.V., and Buisman, C.J., Hydrogen production with a microbial biocathode, Environ. Sci. Technol., 2008, vol. 42, pp. 629–634.

    Article  CAS  PubMed  Google Scholar 

  56. Geelhoed, J.S., Hamelers, H.V.M., and Stams, A.J.M., Electricity-mediated biological hydrogen production, Curr. Opin. Microbiol., 2010, vol. 13, pp. 307–315.

    Article  CAS  PubMed  Google Scholar 

  57. Croese, E., Pereira, M.A., Envezink, G.-J.W., et al., Analysis of the microbial community of the biocathode of hydrogen-producing microbial electrolysis cell, Appl. Microbiol. Biotechnol., 2011, vol. 92, pp. 1083–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fu, O., Kabayashi, H., Kuramochi, Y., et al., Bioelectrochemical analysis of the a thermophilic biocatode catalyzing sustainable hydrogen production, Int. J. Hydrogen Energy, 2013, vol. 38, pp. 15638–16645.

    Article  CAS  Google Scholar 

  59. Aulenta, F., Catapono, L., Snip, L., et al., Linking bacterial metabolism to graphite cathodes; electrochemical insights into the H2-producing capability of Desulfovibrio sp., Chem. Sus. Chem., 2012, vol. 5, pp. 1081–1085.

    Article  CAS  Google Scholar 

  60. Chae, K.J., Choi, M.-J., Kim, K.Y., et al., A solarpowered microbial electrolysis cell with a platinum catalyst free cathode to produce hydrogen, Environ. Sci. Technol., 2009, vol. 46, pp. 5230–5239.

    Google Scholar 

  61. Sun, M., Sheng, G.-P., Zhang, L., et al., The MEC–MFC-coupled system for biohydrogen production from acetate, Environ. Sci. Technol., 2008, vol. 42, pp. 8095–8100.

    Article  CAS  PubMed  Google Scholar 

  62. Wang, A., Sun, D., Cao, G., et al., Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and microbial electrolysis cell, Bioresouse Technol., 2011, vol. 102, pp. 4137–4143.

    Article  CAS  Google Scholar 

  63. Borole, A.P., Microbial fuel cells and microbial electrolyzes. http://www.electrochem.org/dl/interface/..fal15_ p55_59p.

  64. Wang, H., Luo, H., Fallgren, P.H., et al., Bioelectrochemical system platform for sustainable environment remediation and energy generation, Biotechnol. Adv., 2015, vol. 33, pp. 317–334.

    Article  PubMed  CAS  Google Scholar 

  65. Bowien, B. and Kusian, B., Genetics and control CO2 assimilation in the chemoautotroph Ralstonia eutropha, Arch. Microbiol., 2002, vol. 178, pp. 85–93.

    Article  CAS  PubMed  Google Scholar 

  66. Pohlmann, A., Fricke, W.F., Reinecke, F., et al., Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H-16, Nat. Biotechnol., 2007, vol. 25, pp. 478–484.

    Article  CAS  Google Scholar 

  67. Yu, J., Dow, A., and Pingalis, S., The energy efficiency of carbon dioxide fixation by a hydrogen-oxidizing bacterium, Int. J. Hydrogen Energy, 2013, vol. 38, pp. 8683–8690.

    Article  CAS  Google Scholar 

  68. Green, M.A., Emery, K., Hishikawa, Y., et al., Solar efficiency tables (version 45), Prog. Photovolt. Res. Appl., 2014, vol. 23, pp. 1–9.

    Article  Google Scholar 

  69. MacDonald, M., Photobiology of Higher Plants, New York: Willey, 2003.

    Google Scholar 

  70. Groussean, E., Lu, J., Corret, N., et al., Isopropanol production with engineering Cupriavidas necator as bioproduction platform, Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 4277–4290.

    Article  CAS  Google Scholar 

  71. Torella, J.P., Gagliard, C.J., Chen, Y.S., et al., Efficient solar to fuels production from a hybrid microbial–water-splitting catalysis system, Proc. Nat. Acad. Sci. U. S. A., 2015, vol. 112, pp. 2337–2342.

    Article  CAS  Google Scholar 

  72. Khan, N.E., Meyers, J.A., Tuerk, A.L., and Curtis, W.R., A process economic assessment of hydrocarbon biofuel production using chemoautotrophic organisms, Bioresours. Technol., 2014, vol. 172, pp. 201–211.

    Article  CAS  Google Scholar 

  73. Matassa, S., Boon, N., and Verstraete, W., Resource recovery from used water: the manufacturing ability of hydrogen-oxidizing bacteria, Water Res., 2015, vol. 68, pp. 467–478.

    Article  CAS  PubMed  Google Scholar 

  74. Yishai, O., Lindner, S.N., Gonzalez de La Cruz., et al., The formate bio-economy, Curr. Opin. Chem. Biol., 2016, vol. 35, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  75. Bar-Even, A., Noor, E., Flamholz, A., and Milo, R., Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes, Biochim. Biophys. Acta, 2012, vol. 1827, nos. 8–9, pp. 1039–1047.

    PubMed  Google Scholar 

  76. Lengeler, I., Dreva, G., and Schlegel, G., Sovremennaya mikrobiologiya (Modern Microbiology), Moscow: Mir, 2005, vol. 1, pp. 358–363.

    Google Scholar 

  77. Cheng, S., Xing, D., Call, D.E., and Logan, B.E., Direct biological conversion of electrical current into methane by electromethanogenesis, Environ. Sci. Technol., 2009, vol. 43, pp. 3953–3958.

    Article  CAS  PubMed  Google Scholar 

  78. Villano, M., Monaco, G., Aulenta, F., and Majone, M., Electrochemically assisted methane production in a biofilm reactor, J. Power Sources, 2011, vol. 196, pp. 9467–9472.

    Article  CAS  Google Scholar 

  79. Beese-Vasbender, P.F., Crote, J.-P., Garrelfs, J., et al., Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon, Bioelectrochemistry, 2015, vol. 102, pp. 50–55.

    Article  CAS  PubMed  Google Scholar 

  80. Fu, Q., Kuramochi, Y., Fukushima, N., et al., Bioelectrochimical analysis of the development of thermophilic biocathode catalyzing electromethanogenesis, Environ. Sci. Technol., 2015, vol. 49, pp. 1225–1232.

    Article  CAS  PubMed  Google Scholar 

  81. Ding, A., Yang, Yu, Sun, G., Wu, D., Impact of applied voltage on methanogeneration and microbial activities in an anaerobic microbial electrolysis cell (MEC), Chem. Eng. J., 2016, vol. 283, pp. 260–265.

    Article  CAS  Google Scholar 

  82. Lohner, S.T., Dentzmann, J.S., and Logan, B.E., Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis, Int. Soc. Microb. Ecol. J., 2014, vol. 8, pp. 1673–1681.

    CAS  Google Scholar 

  83. Summers, Z.M., Fogarty, H.E., Leang, C., et al., Direct exchange of the electrons with in aggregates an evolved syntrophic coculture of anaerobic bacteria, Science, 2010, vol. 330, pp. 1413–1415.

    Article  CAS  PubMed  Google Scholar 

  84. Rotaru, A.-B., Shrestha, P.M., Lin, F., et al., A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for reduction of carbon dioxide to methane, Energy Environ. Sci., 2014, vol. 7, pp. 408–415.

    Article  CAS  Google Scholar 

  85. Rotaru, A.-B., Shrestha, P.M., Lin, F., et al., Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri, Appl. Environ. Microbiol., 2014, vol. 80, pp. 4599–4605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Steigert, M., Yates, M.D., Call, D.F., et al., Comparison of nonprecisuons metal cathode materials for methane production by electromethanogenesis, ACS Sustain. Chem. Eng., 2014, vol. 7, pp. 910–917.

    Google Scholar 

  87. Moreno, R., San-Martin, M.I., Escapa, A., and Morau, A., Domestic wastewater treatment in parallel methane production in microbial electrolysis cell, Renewable Energy, 2016, vol. 93, pp. 442–448.

    Article  CAS  Google Scholar 

  88. Zuen, G., Kobayashi, T., Lu, X., and Xu, K., Understanding methane bio electro synthesis from carbon dioxide in two-chamber microbial electrolysis cells (MES) containing a carbon biocathode, Biores. Technol., 2015, vol. 186, pp. 141–148.

    Article  CAS  Google Scholar 

  89. Combrian inovation.com

  90. Nevin, K.P., Woodard, T.L., Franks, A.E., et al., Microbial electro synthesis: feeding microbes electricity. To convert carbon dioxide and water to multicarbon extra cellular organic compounds, MBio, 2010, vol. 1, no.2, p. e00103–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Nevin, K.P., Hensley, S.A., Franks, A.E., et al., Electro synthesis of organic compounds from carbon dioxide is catalyzed by diversity of acetogenic microorganisms, Appl. Environ. Microbiol., 2011, vol. 77, pp. 2882–2886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ragsdale, S.W. and Pierce, E., Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation, Biochem. Biophys. Acta, 2008, vol. 1784, pp. 1873–1898.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Drake, H.C., Gossner, A.S., and Daniel, S.L., Old acetogenes new light, Ann. N.Y. Acad. Sci., 2008, vol. 1125, pp. 100–108.

    Article  CAS  PubMed  Google Scholar 

  94. Schuchmann, K. and Muller, V., Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenes bacteria, Nat. Rev. Microbiol., 2014, vol. 12, pp. 809–821.

    Article  CAS  PubMed  Google Scholar 

  95. Ammam, F., Tremblay, P.-L., Lizak, D.M., and Zhang, T., Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomussa ovata, Biotechnol. Biofuel., 2016, vol. 9, pp. 163–173.

    Article  CAS  Google Scholar 

  96. Tremblay, P.-L., Höglund, D., Koza, A., et al., Adaptation of the autotrophic acetogen Sporomussa ovata to methanol accelerates the conversion of CO2 to organic products, Sci. Rep., 2015, vol. 5, pp. 16168–16178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Modestra, J.A., Navaneeth, B., and Mohan, S.V., Bio electrocatalytic reduction of CO2: enrichment of homo acetogenes and pH optimization towards enhancement of carboxylic acids, J. CO2 Utilization, 2015, vol. 10, pp. 78–87.

    Article  CAS  Google Scholar 

  98. Patil, S.A., Arends, J.B., Van Wonterghem, I., et al., Selective enrichment establishes a stable performing community for microbial electro synthesis of acetate from CO2, Environ. Sci. Technol., 2015, vol. 49, pp. 8833–8843.

    Article  CAS  PubMed  Google Scholar 

  99. Yordin, L., Gringer, T., Monett, J., et al., High acetic acid rate obtained by microbial electro synthesis from carbon dioxide, Environ. Sci. Technol., 2015, vol. 49, pp. 13566–13574.

    Article  CAS  Google Scholar 

  100. Hou, J., Lin, Z., Yang, S., and Zhou, Y., Threedimensional macro porous anodes based on stainless steel felt for high-performance microbial fuel cells, J. Power Sources, 2014, vol. 258, pp. 204–209.

    Article  CAS  Google Scholar 

  101. Guo, K., Donose, B.C., Soeriyadi, A.H., et al., Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems, Environ. Sci. Technol., 2014, vol. 48, pp. 7151–7156.

    Article  CAS  PubMed  Google Scholar 

  102. Pons, L., Delia, M.L., and Bergel, A., Effect of surface roughness biofilms coverage and biofilm structure on the electrochemical efficiency of microbial cathode, Bioresource Technol., 2011, vol. 102, pp. 2678–2683.

    Article  CAS  Google Scholar 

  103. Jordin, L., Freguia, S., Donose, B.C., et al., A novel carbon nanotube modified scaffolds an efficient biocathode material for improved microbial electrosynthesis, J. Mater. Chem., 2014, vol. 2, pp. 13093–13102.

    Article  CAS  Google Scholar 

  104. Zhang, T., Nic, H.R., Bain, T.S., et al., Improved cathode materials for microbial electro synthesis, Energy Environ. Sci., 2013, vol. 6, pp. 217–224.

    Article  CAS  Google Scholar 

  105. Guo, X., Prevotean, A., Patil, S.A., and Rabaey, K., Engineered electrodes for microbial electro catalysis, Curr. Opin. Biotechnol., 2015, vol. 33, pp. 149–156.

    Article  CAS  PubMed  Google Scholar 

  106. Giddings, C.G., Nevin, K.P., Woodward, T., et al., Simplifying microbial electrosynthesis reactor design, Front. Microbiol., 2015, vol. 6, pp. 1–6.

    Article  Google Scholar 

  107. Kreg, T., Sydow, A., Schroer, U., et al., Reactor concepts for bioelectrochemical synthesis and energy conservation, Trends Biotechnol., 2014, vol. 32, pp. 645–655.

    Article  CAS  Google Scholar 

  108. Hongo, M. and Jwahara, M., Application of electroenergizing method to L-glutamic acid fermentation, Agric. Biol. Chem., 1979, vol. 43, pp. 2075–2083.

    CAS  Google Scholar 

  109. Hongo, M. and Jwahara, M., Determination of electro-energizing conditions for L-glutamic acid fermentation, Agric. Biol. Chem., 1979, vol. 43, pp. 2083–2086.

    CAS  Google Scholar 

  110. Sasaki, K., Tsuge, Y., Sasaki, D., and Kondo, A., Increase in lactate yield by growing Corynebacterium glutamicum in a bioelectrochemical reactor, J. Biosci. Bioeng., 2014, vol. 117, pp. 598–601.

    Article  CAS  PubMed  Google Scholar 

  111. Zhao, Y., Cao, W., Wang, Z., et al., Enhanced succinic acid production from corncob hydrolyzates by microbial electrolysis cells, Bioresource Technol., 2016, vol. 202, pp. 152–157.

    Article  CAS  Google Scholar 

  112. Kim, T.S. and Kim, B.H., Electron flow shift in vol. Clostridium acetobutylicumvol. fermentation by electrochemically introduced reducing equivalent, Biotechnol. Lett., 1988, vol. 10, pp. 123–128.

    Article  CAS  Google Scholar 

  113. Flynn, J.M., Ross, D.E., Hunt, K.A., et al., Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria, mBio, 2010, vol. 1, no.5, p. e00190–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sturm-Richter, K., Golitsch, F., Sturm, G., et al., Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells, Bioresourse Technol., 2015, vol. 186, pp. 89–96.

    Article  CAS  Google Scholar 

  115. Schievano, A., Sciarria, P., Van Broekhoven, K., et al., Electro-fermentation—merging electrochemistry with fermentation in industrial application, Trends Biotechnol., 2016, vol. 34, pp. 866–878.

    Article  CAS  PubMed  Google Scholar 

  116. Moscoviz, R., Toledo-Alarcon, J., Trably, E., and Bernet, N., Electro-fermentation: how to drive fermentation using electrochemical systems, Trends Biotechnol., 2016, vol. 34, pp. 856–865.

    Article  CAS  PubMed  Google Scholar 

  117. Ganique, R., Puig, S., Batle-Vilanova, P., et al., Microbial electro synthesis of butyrate from carbon dioxide, Chem. Commun., 2015, vol. 51, no. 15, pp. 3235–3238.

    Article  CAS  Google Scholar 

  118. Ter Avest, M.A., Zajdel, T.J., and Ajo-Franklin, C.M., The Mtr pathway of Shewanella oniedensis MR-I couples substrate utilization to current production in Escherichia coli, Chem. Electro. Chem., 2014, vol. 1, no. 11, pp. 1874–1879.

    CAS  Google Scholar 

  119. Rabaey, K., Girgnis, P., and Nielsen, L., Metabolic and practical consideration on microbial electro synthesis, Curr. Opin. Biotechnol., 2011, vol. 22, pp. 371–377.

    Article  CAS  PubMed  Google Scholar 

  120. Wang, H. and Ren, Z.J., A comprehensive review of microbial electrochemical system as a platform technology, Biotechnol. Adv., 2013, vol. 31, pp. 1796–1807.

    Article  PubMed  CAS  Google Scholar 

  121. Wang, H., Qian, F., and Li, Y., Solar-assisted microbial fuel cells for bioelectricity and chemical fuel generation, Nano Energy, 2014, vol. 8, pp. 264–273.

    Article  CAS  Google Scholar 

  122. Torres, C.I., On the importance of identifying, characterizing, and predicting fundamental phenomena towards microbial electrochemistry application, Curr. Opin. Biotechnol., 2014, vol. 27, pp. 107–114.

    Article  CAS  PubMed  Google Scholar 

  123. Hallenbeck, P.C., Grogger, M., and Veverka, D., Recent advances in microbial electrocatalysis, Electrocatalysis, 2014, vol. 5, pp. 319–329.

    Article  CAS  Google Scholar 

  124. Patil, S.A., Gildemyn, S., Pant, D., et al., A logical data representation framework for electricity-driven bioproduction process, Biotechnology Adv., 2015, vol. 33, no. 6, pp. 736–744.

    Article  CAS  Google Scholar 

  125. Nybo, S.E., Khan, N.E., Woolston, B.M., and Curtis, W.R., Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals, Metab. Eng., 2015, vol. 30, p. 105.

    Article  CAS  PubMed  Google Scholar 

  126. El Mekawy, A., Hegab, H.M., Mohanakzishna, G., et al., Technological advances in CO2 conversion electro-biorefinery: a step toward commercialization, Bioresour. Technol., 2016, vol. 34, pp. 357–370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Debabov.

Additional information

Original Russian Text © V.G. Debabov, 2017, published in Biotekhnologiya, 2017, Vol. 33, No. 3, pp. 9–28.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debabov, V.G. Microbial Electrosynthesis. Appl Biochem Microbiol 53, 842–858 (2017). https://doi.org/10.1134/S0003683817090034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817090034

Keywords

Navigation