Advertisement

Applied Biochemistry and Microbiology

, Volume 53, Issue 7, pp 775–780 | Cite as

Analytical Enzymatic Reactions in Microfluidic Chips

  • K. A. Lukyanenko
  • I. A. Denisov
  • A. S. Yakimov
  • E. N. Esimbekova
  • K. I. Belousov
  • A. S. Bukatin
  • I. V. Kukhtevich
  • V. V. Sorokin
  • A. A. Evstrapov
  • P. I. Belobrov
Metrology, Standardization, and Control

Abstract

A number of approaches have been proposed and tested to transfer enzymatic reactions into the functional elements of microfluidic chips on the example of the bienzyme bioluminescent reaction involving NAD(P)H:FMN-oxidoreductase and luciferase. Measurement of the catalytic activity of these enzymes (under the influence of pollutants) is the basis of enzymatic bioassay of various liquids. It was found that all of the components of the reaction must be placed in the same cell of the chip to improve the reproducibility of the measurements. The use of starch gel as a carrier for immobilization and gelatin as a scaffold in the reactor of the chip enables the preservation of enzyme activity in the course of sealing the chip at room temperature. It is shown that the components of the reaction should be vigorously stirred in a microfluidic chip reactor to improve the efficiency of the analysis. As a result of the studies, a prototype of microfluidic chip based on the enzymatic bioluminescent reaction is proposed. It is characterized by a detection limit of copper sulfate of 3 μM that corresponds to the sensitivity of traditional lux-biosensors based on living cells. The analysis time is reduced to 1 min, and the analysis can be performed by individuals without special laboratory skills.

Keywords

bioluminescence luciferase microfluidics microfluidic chip enzymatic bioassay 

Abbreviations

PMMA

polymethyl methacrylate

ЕС50

effective concentration of the active substance, causing reduction of the luminescent activity of the bienzyme system by 50%

EDC

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

FMNH2

reduced flavin mononucleotide

NAD(P)H

reduced nicotinamide adenine dinucleotide phosphate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gubala, V., Harris, L.F., Ricco, A.J., et al., Point of care diagnostics: status and future, Anal. Chem., 2012, vol. 84, no. 2, pp. 487–515.CrossRefPubMedGoogle Scholar
  2. 2.
    Jung, W., Han, J., Choi, J., et al., Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies, Microelectron. Eng., 2015, pp. 132, 46–57.CrossRefGoogle Scholar
  3. 3.
    Danielmark, S.H., Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications, Chem. Soc. Rev., 2010, vol. 39, pp. 1153–1182.CrossRefGoogle Scholar
  4. 4.
    Evstrapov, A.A., Microfluidic chips for biological and medical research, Russ. J. Gen. Chem., 2012, vol. 82, no. 12, pp. 2132–2145.CrossRefGoogle Scholar
  5. 5.
    Ning, R., Wang, F., and Lin, L., Biomaterial-based microfluidics for cell culture and analysis, Trends Anal. Chem. (Pers. Ed.), 2016, vol. 80, pp. 255–265.CrossRefGoogle Scholar
  6. 6.
    Midwoud, P.M., Janse, A., Merema, M.T., et al., Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models, Anal. Chem., 2012, vol. 84, no. 9, pp. 3938–3944.CrossRefPubMedGoogle Scholar
  7. 7.
    Temiz, Y., Lovchik, R.D., Kaigala, G.V., et al., Labon-a-chip devices: how to close and plug the lab?, Microelec. Eng., 2015, vol. 132, pp. 156–175.CrossRefGoogle Scholar
  8. 8.
    Kratasyuk, V.A. and Esimbekova, E.N., Applications of luminous bacteria enzymes in toxicology, Comb. Chem. High Throughput Screen., 2015, vol. 18, no. 10, pp. 952–959.CrossRefPubMedGoogle Scholar
  9. 9.
    Shimomura, O., Bioluminescence: Chemical Principles and Methods, Singapore, Republic of Singapore: World Scientific Publishing Co. Pte. Ltd, 2012.CrossRefGoogle Scholar
  10. 10.
    Bezrukikh, A.E., Esimbekova, E.N., Nemtseva, E.N., et al., Gelatin and starch as stabilizers of the coupled enzyme system of luminous bacteria {NADH:FMN–oxidoreductase–luciferase, Analyt. Bioanalyt. Chem., 2014, vol. 406, no. 23, pp. 5743–5747.CrossRefGoogle Scholar
  11. 11.
    Lonshakova-Mukina, V.I., Esimbekova, E.N., and Kratasyuk, V.A., Impact of enzyme stabilizers on the characteristics for biomodules for bioluminescent biosensors, Sens. Actual. B: Chem., 2015, vol. 213, pp. 244–247.CrossRefGoogle Scholar
  12. 12.
    Guckenberger, D.J. Wan, A.M.D., et al., Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices, Lab. Chip, 2015, vol. 15, no. 11, pp. 2364–2378.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chung, B.G., Lee, K., Khademhosseini, A., et al., Microfluidic fabrication of microengineered by drogels and their application in tissue engineering, Lab. Chip, 2012, vol. 12, no. 1, pp. 45–59.CrossRefPubMedGoogle Scholar
  14. 14.
    Leth, S., Maltoni, S., Simkus, R., et al., Engineered bacteria based biosensors for monitoring bioavailable heavy metals, Electroanalysis, 2002, vol. 14, no. 1, pp. 35–42.CrossRefGoogle Scholar
  15. 15.
    Hakkila, K. Leskinen, P., et al., Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips, Appl. Toxicol., 2004, vol. 24, no. 5, pp. 333–342.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • K. A. Lukyanenko
    • 1
  • I. A. Denisov
    • 1
  • A. S. Yakimov
    • 1
  • E. N. Esimbekova
    • 1
    • 2
  • K. I. Belousov
    • 3
  • A. S. Bukatin
    • 1
  • I. V. Kukhtevich
    • 1
  • V. V. Sorokin
    • 1
  • A. A. Evstrapov
    • 3
    • 4
  • P. I. Belobrov
    • 1
    • 2
  1. 1.Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Biophysics Institute, Siberian Branch (SB)Russian Academy of Sciences (RAS)KrasnoyarskRussia
  3. 3.St. Petersburg Institute of Fine Mechanics and OpticsSt. PetersburgRussia
  4. 4.Institute for Analytical InstrumentationSt. PetersburgRussia

Personalised recommendations