Skip to main content
Log in

Protective effect of inhibitors of succinate dehydrogenase on wheat seedlings during osmotic stress

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of malonate and sedaxane, a compound with the fungicidal effect which act as succinate dehydrogenase inhibitors, on the resistance of etiolated wheat seedlings (Triticum aestivum L.) to osmotic stress caused by 12% PEG 6000 solution, was studied. The presowing treatment of seeds with 0.3 mM sedaxane solution significantly reduced the inhibitory effect of osmotic stress on seedling growth. The protective effect of 10 mM malonate was significant when it was added to the incubation medium of the roots; the effect of preseeding treatment with malonate was less significant. Unlike malonate, malate had no positive effect on seedling growth under osmotic stress. The activity of succinate dehydrogenase and the hydrogen peroxide content decreased in seedlings after the treatment of roots with malonate and sedaxane. Pretreatment with sedaxane and the addition of malonate to the incubation medium of roots prevented the accumulation of a lipid peroxidation product, malondialdehyde, which is caused by osmotic stress, and increased peroxidase activity. It was concluded that the stress-protective effect of sedaxane and malonate on wheat seedlings might be due to the inhibition of succinate dehydrogenase-dependent formation of reactive oxygen species and the prevention of oxidative cell damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suzuki, N. and Mittler, R., Physiol. Plant., 2006, vol. 126, no. 1, pp. 45–51.

    Article  CAS  Google Scholar 

  2. Scandalios, J.G., Trends Biochem. Sci., 2002, vol. 27, no. 9, pp. 483–486.

    Article  CAS  PubMed  Google Scholar 

  3. Foyer, C.H. and Noctor, G., Antioxid. Redox Signal., 2009, vol. 11, no. 4, pp. 861–906.

    Article  CAS  PubMed  Google Scholar 

  4. Foyer, C.H. and Shigeoka, S., Plant Physiol., 2011, vol. 155, no. 1, pp. 93–100.

    Article  CAS  PubMed  Google Scholar 

  5. Kreslavskii, V.D., Los’, D.A., Allakhverdiev, S.I., and Kuznetsov, Vl.V., Russ. J. Plant Physiol., 2012, vol. 59, no. 2, pp. 141–154.

    Article  Google Scholar 

  6. Rhoads, D.M., Umbach, A.L., Subbaiah, C.C., and Siedow, J.N., Plant Physiol., 2006, vol. 141, no. 2, pp. 357–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bartoli, C.G., Gomez, F., Martinez, D.E., and Guiamet, J.J., J. Exp. Bot., 2004, vol. 55, no. 403, pp. 1663–1669.

    Article  CAS  PubMed  Google Scholar 

  8. Cvetkovska, M. and Vanlerberghe, G.C., Plant Cell Environ., 2013, vol. 36, no. 3, pp. 721–732.

    Article  CAS  PubMed  Google Scholar 

  9. Huang, S. and Millar, A.H., Curr. Opin. Plant Biol., 2013, vol. 16, no. 3, pp. 344–349.

    Article  CAS  PubMed  Google Scholar 

  10. Millar, A.H., Whelan, J., Soole, K.L., and Day, D.A., Annu. Rev. Plant Biol., 2011, vol. 62, pp. 79–104.

    Article  CAS  PubMed  Google Scholar 

  11. Quinlan, C.L., Orr, A.L., Perevoshchikova, I.V., Treberg, J.R., Ackrell, B.A., and Brand, M.D., J. Biol. Chem., 2012, vol. 287, no. 32, pp. 27255–27264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gleason, C., Huang, S., Thatcher, L., Foley, R.C., Anderson, C.R., Carroll, A.J., Millar, A.H., and Singh, K.B., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 26, pp. 10768–10773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Araujo, W.L., Nunes-Nesi, A., Osorio, S., Usadel, B., Fuentes, D., Nagy, R., Balbo, I., Lehmann, M., Studart-Witkowski, C., Tohge, T., Martinoia, E., Jordana, X., DaMatta, F.M., and Ferniea, A.R., Plant Cell, 2011, vol. 23, no. 2, pp. 600–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ershova, A.N. and Berdnikova, O.S., in Signal’nye sistemy rastenii: ot retseptora do otvetnoi reaktsii organizma (Signaling Systems of Plants: From Receptor to Response of the Organism), St. Petersburg: Izd. St.-Peterburg. Gos. Univ., 2016, pp. 326–327.

    Google Scholar 

  15. Polygalova, O.O., Bufetov, E.N., and Ponomareva, A.A., Tsitologiya, 2007, vol. 49, no. 8, pp. 664–670.

    CAS  Google Scholar 

  16. Zeun, R., Scalliet, G., and Oostendorp, M., Pest. Manag. Sci., 2013, vol. 69, no. 4, pp. 527–534.

    Article  CAS  PubMed  Google Scholar 

  17. Wickramasinghe, P., Bhuiyan, S.A., and Croft, B.J., Proc. Aust. Soc. Sugar Cane Technol, 2015, vol. 37, no. 1, pp. 1–7.

    Google Scholar 

  18. Karelina, L.N., Vlasov, B.Ya., Il’ina, O.P., and Osmanyan, A.K., Dokl. Ross. Akad. S.-Kh. Nauk, 2009, no. 2, pp. 44–46.

    Google Scholar 

  19. Eprintsev, A.T., Fedorin, D.N., Karabutova, L.A., and Pokusina, T.A., Russ. J. Plant Physiol., 2016, vol. 63, no. 4, pp. 505–510.

    Article  CAS  Google Scholar 

  20. Metody biokhimicheskikh issledovanii (lipidnyi i energeticheskii obmen) (Methods of Biochemical Research: Lipid and Energy Metabolism), Prokhorov, M.I., Ed, Leningrad Izd. Leningr. Univ., 1982.

  21. Sagisaka, S., Plant Physiol., 1976, vol. 57, no. 2, pp. 308–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Merzlyak, M.N., Pogosyan, S.I., Yuferova, S.G., and Shevyreva, V.A., Biol. Nauki, 1978, no. 9, pp. 86–94.

    Google Scholar 

  23. Ridge, I. and Osborne, D.J., J. Exp. Bot., 1970, vol. 21, no. 4, pp. 843–856.

    Article  CAS  Google Scholar 

  24. Minibaeva, F.V. and Gordon, L.Kh., Russ. J. Plant Physiol., 2003, vol. 50, no. 3, pp. 411–416.

    Article  CAS  Google Scholar 

  25. Tarchevsky, I.A., Maksyutova, N.N., Yakovleva, V.G., and Grechkin, A.N., Russ. J. Plant Physiol., 1999, vol. 46, no. 1, pp. 17–21.

    CAS  Google Scholar 

  26. Kolupaev, Yu.E., Yastreb, T.O., Shvidenko, N.V., and Karpets, Yu.V., Appl. Biochem. Microbiol., 2012, vol. 48, no. 5, pp. 500–505.

    Article  CAS  Google Scholar 

  27. Suzuki, N., Koussevitzky, S., Mittler, R., and Miller, G., Plant Cell Environ., 2012, vol. 35, no. 2, pp. 259–270.

    Article  CAS  PubMed  Google Scholar 

  28. Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V., and van Breusegem, F., Trends Plant Sci., 2011, vol. 16, no. 6, pp. 300–309.

    Article  CAS  PubMed  Google Scholar 

  29. Kolupaev, Yu.E. and Karpets, Yu.V., in Handbook on Reactive Oxygen Species (ROS): Formation Mechanisms, Physiological Roles and Common Harmful Effects, Suzuki, M. and Yamamoto, S., Eds., New York: Nova Science Publishers, 2013, pp. 109–136.

  30. Vasil’ev, L.A., Dzyubinskaya, E.V., Kiselevsky, D.B., Shestak, A.A., and Samuilov, V.D., Biochemistry (Moscow), 2011, vol. 76, no. 10, pp. 1120–1130.

    Article  Google Scholar 

  31. Dzyubinskaya, E.V., Ionenko, I.F., Kiselevskii, D.B., Samuilov, V.D., and Samuilov, F.D., Biochemistry (Moscow), 2013, vol. 78, no. 1, pp. 68–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Karpets.

Additional information

Original Russian Text © Yu.E. Kolupaev, Yu.V. Karpets, T.O. Yastreb, E.N. Firsova, 2017, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2017, Vol. 53, No. 3, pp. 316–322.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolupaev, Y.E., Karpets, Y.V., Yastreb, T.O. et al. Protective effect of inhibitors of succinate dehydrogenase on wheat seedlings during osmotic stress. Appl Biochem Microbiol 53, 353–358 (2017). https://doi.org/10.1134/S0003683817030097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817030097

Keywords

Navigation