Skip to main content
Log in

Proteomic analysis of contaminants in recombinant membrane hemeproteins expressed in E. coli and isolated by metal affinity chromatography

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Contaminating proteins have been identified by “shotgun” proteomic analysis in 14 recombinant preparations of human membrane heme- and flavoproteins expressed in Escherichia coli and purified by immobilized metal ion affinity chromatography. Immobilized metal ion affinity chromatography of ten proteins was performed on Ni2+-NTA-sepharose 6B, and the remaining four proteins were purified by ligand affinity chromatography on 2',5'-ADP-sepharose 4B. Proteomic analysis allowed to detect 50 protein impurities from E. coli. The most common contaminant was Elongation factor Tu2. It is characterized by a large dipole moment and a cluster arrangement of acidic amino acid residues that mediate the specific interaction with the sorbent. Peptidyl prolyl-cis-trans isomerase SlyD, glutamine-fructose-6-phosphate aminotransferase, and catalase HPII that contained repeating HxH, QxQ, and RxR fragments capable of specific interaction with the sorbent were identified among the protein contaminants as well. GroL/GroS chaperonins were probably copurified due to the formation of complexes with the target proteins. The Ni2+ cations leakage from the sorbent during lead to formation of free carboxyl groups that is the reason of cation exchanger properties of the sorbent. This was the putative reason for the copurification of basic proteins, such as the ribosomal proteins of E. coli and the widely occurring uncharacterized protein YqjD. The results of the analysis revealed variation in the contaminant composition related to the type of protein expressed. This is probably related to the reaction of E. coli cell proteome to the expression of a foreign protein. We concluded that the nature of the protein contaminants in a preparation of a recombinant protein purified by immobilized metal ion affinity chromatography on a certain sorbent could be predicted if information on the host cell proteome were available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kinna, A., Tolner, B., Rota, E.M., Titchener-Hooker, N., Nesbeth, D., and Chester, K., Biotechnol. Bioeng., 2016, vol. 113, no. 1, pp. 130–140.

    Article  CAS  PubMed  Google Scholar 

  2. Scheich, C., Sievert, V., and Bussow, K., BMC Biotechnol., 2003, vol. 3, p. 12.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Porath, J., Carlsson, J., Olsson, I., and Belfrage, G., Nature, 1975, vol. 258, no. 5536, pp. 598–599.

    Article  CAS  PubMed  Google Scholar 

  4. Bornhorst, J.A. and Falke, J.J., Methods Enzymol., 2000, vol. 326, pp. 245–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, J., Xu, Y., Chen, Y., Sprung, R., Kim, S.C., Xie, S., and Zhao, Y., Mol. Cell. Proteomics, 2007, vol. 6, no. 4, pp. 669–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, Y., Lin, H., Deng, C., Yang, P., and Zhang, X., Proteomics, 2008, vol. 8, no. 2, pp. 238–249.

    Article  CAS  PubMed  Google Scholar 

  7. Tan, F., Zhang, Y., Mi, W., Wang, J., Wei, J., Cai, Y., and Qian, X., J. Proteome Res., 2008, vol. 7, no. 3, pp. 1078–1087.

    Article  CAS  PubMed  Google Scholar 

  8. Wei, J., Zhang, Y., Wang, J., Tan, F., Liu, J., Cai, Y., and Qian, X., Rapid Commun. Mass Spectrom., 2008, vol. 22, no. 7, pp. 1069–1080.

    Article  CAS  PubMed  Google Scholar 

  9. Block, H., Kubicek, J., Labahn, J., Roth, U., and Schafer, F., Protein Expr. Purif., 2008, vol. 57, no. 2, pp. 244–254.

    Article  CAS  PubMed  Google Scholar 

  10. Hochuli, E., Dobeli, H., and Schacher, A., J. Chromatogr., 1987, vol. 411, pp. 177–184.

    Article  CAS  PubMed  Google Scholar 

  11. Mooney, J.T., Fredericks, D.P., Zhang, C., Christensen, T., Jespergaard, C., Schiodt, C.B., and Hearn, M.T., Protein Expr. Purif., 2014, vol. 94, pp. 85–94.

    Article  CAS  PubMed  Google Scholar 

  12. Bolanos-Garcia, V.M. and Davies, O.R., Biochim Biophys. Acta, 2006, vol. 1760, no. 9, pp. 1304–1313.

    Article  CAS  PubMed  Google Scholar 

  13. Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  14. Sergeev, G.V., Gilep, A.A., Estabrook, R.V., and Usanov, S.A., Biochemistry (Moscow), 2006, vol. 71, no. 7, pp. 790–799.

    Article  CAS  Google Scholar 

  15. Chudaev, M.V. and Usanov, S.A., Biochemistry (Moscow), 1997, vol. 62, no. 4, pp. 401–411.

    CAS  Google Scholar 

  16. Chudaev, M.V., Gilep, A.A., and Usanov, S.A., Biochemistry (Moscow), 2001, vol. 66, no. 6, pp. 667–681.

    Article  CAS  Google Scholar 

  17. Ershov, P., Mezentsev, Y., Gnedenko, O., Mukha, D., Yantsevich, A., Britikov, V., Kaluzhskiy, L., Yablokov, E., Molnar, A., Ivanov, A., Lisitsa, A., Gilep, A., Usanov, S., and Archakov, A., Proteomics, 2012, vol. 12, no. 22, pp. 3295–3298.

    Article  CAS  PubMed  Google Scholar 

  18. Shkel’, T.V., Vasilevskaya, A.V., Gilep, A.A., Chernovetskii, M.A., Luk’yanenko, I.G., and Usanov, S.A., Trudy BGU, 2013, vol. 8, no. 1, pp. 152–158.

    Google Scholar 

  19. Yantsevich, A.V., Dichenko, Y.V., Mackenzie, F., Mukha, D.V., Baranovsky, A.V., Gilep, A.A., Usanov, S.A., and Strushkevich, N.V., FEBS J., 2014, vol. 281, no. 6, pp. 1700–1713.

    Article  CAS  PubMed  Google Scholar 

  20. Gilep, A.A., Guryev, O.L., Usanov, S.A., and Estabrook, R.W., Biochem. Biophys. Res. Commun., 2001, vol. 284, no. 4, pp. 937–941.

    Article  CAS  PubMed  Google Scholar 

  21. Gilep, A.A., Guryev, O.L., Usanov, S.A., and Estabrook, R.W., Arch. Biochem. Biophys., 2001, vol. 390, no. 2, pp. 215–221.

    Article  CAS  PubMed  Google Scholar 

  22. Wu, Z.L., Qiao, J., Zhang, Z.G., Guengerich, F.P., Liu, Y., and Pei, X.Q., Biotechnol. Lett., 2009, vol. 31, no. 10, pp. 1589–1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harnastai, I.N., Gilep, A.A., and Usanov, S.A., Protein Expr. Purif., 2006, vol. 46, no. 1, pp. 47–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yantsevich.

Additional information

Original Russian Text © A.V. Yantsevich, Ya.V. Dzichenka, A.V. Ivanchik, M.A. Shapiro, M. Trawkina, T.V. Shkel, A.A. Gilep, G.V. Sergeev, S.A. Usanov, 2017, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2017, Vol. 53, No. 2, pp. 173–187.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yantsevich, A.V., Dzichenka, Y.V., Ivanchik, A.V. et al. Proteomic analysis of contaminants in recombinant membrane hemeproteins expressed in E. coli and isolated by metal affinity chromatography. Appl Biochem Microbiol 53, 173–186 (2017). https://doi.org/10.1134/S000368381702017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368381702017X

Keywords

Navigation