Skip to main content
Log in

Effect of some carbon nanomaterials on ethanol oxidation by Gluconobacter oxydans bacterial cells

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of carbon nanomaterials (carbon nanotubes, thermally expanded and pyrolytic graphite) on the bioelectrochemical activity of Gluconobacter oxydans bacterial cells was studied during sorption contact with nanomaterials. For bacterial immobilization, the surface of a working bioelectrode was modified via the application of bacterial suspension in the studied nanomaterial and chitosan. The bioelectrochemical electrode characteristics (the amplitude of generated potential, cyclic volt–ampere characteristics, resistance) were estimated before and in the process of bacterial interaction with ethanol (3-electrode measurement scheme). Modification of the spectral graphite electrode by carbon nanotubes allowed a decrease in the resistance of the charge transfer by 48% and an increase in the oxidation current on cyclic volt—ampere characteristics at a voltage of 200 mV by 21% as compared with nonmodified electrode. The thermally expanded and pyrolytic graphite increased the bioelectrode resistance to 4050 and 8447 Ohm cm2, respectively. Mathematical modeling demonstrated that from 75 to 100% of biomaterial (depending on the used nanomaterial) were involved in the process of electricity generation with the selected method of the bacterial immobilization. The use of data obtained during the development of microbial biosensors and electrodes of biofuel cells is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vasilov, R.G., Reshetilov, A.N., and Shestakov, A.I., Priroda (Moscow, Russ. Fed.), 2013, no. 12, pp. 65–70.

    Google Scholar 

  2. Logan, B.E., Microbial Fuel Cells, Hoboken, New Jersey John Wiley and Sons, Inc., 2008.

    Google Scholar 

  3. Cabral, J.M.S., Aires-Barros, M.R., Pinheiro, H., and Prazeres, D.M.F., J. Biotechnol., 1997, no. 59, pp. 133–143.

    Article  CAS  PubMed  Google Scholar 

  4. Newman, J. and Setford, S., Mol. Biotechnol., 2006, vol. 32, no. 3, pp. 249–268.

    Article  CAS  PubMed  Google Scholar 

  5. Gupta, A., Singh, V.K., Qazi, G.N., and Kumar, A., J. Mol. Microbiol. Biotechnol., 2001, vol. 3, no. 3, pp. 445–456.

    CAS  PubMed  Google Scholar 

  6. Lusta, K.A. and Reshetilov, A.N., Appl. Biochem. Microbiol., 1998, no. 34, pp. 307–320.

    Google Scholar 

  7. Svitel, J., Tkac, J., Vostiar, I., Navratil, M., Stefuca, V., Bucko, M., and Gemeiner, P., Biotechnol. Lett., 2006, vol. 28, pp. 2003–2010.

    Article  CAS  PubMed  Google Scholar 

  8. Deppenmeier, U., Hoffmeister, M., and Prust, C., Appl. Microbiol. Biotechnol., 2002, vol. 60, no. 3, pp. 233–242.

    Article  CAS  PubMed  Google Scholar 

  9. Macauley, S., McNeil, B., and Harvey, L.M., Crit. Rev. Biotechnol., 2001, vol. 21, no. 1, pp. 1–25.

    Article  CAS  PubMed  Google Scholar 

  10. Tkac, J., Svitel, J., Vostiar, I., Navratil, M., and Gemeiner, P., Bioelectrochemistry, 2009, vol. 76, nos 1–2, pp. 53–62.

    Article  CAS  PubMed  Google Scholar 

  11. Bertokova, A., Bertok, T., Filip, J., and Tkac, J., Chemical Papers, 2015, vol. 69, no. 1, pp. 27–41.

    Article  CAS  Google Scholar 

  12. Babkina, E.E., Ponomareva, O.N., Alferov, V.A., Reshetilov, A.N., and Bogdanavskaya, B.A., Sens. Sist., 2006, vol. 20, no. 4, pp. 329–335.

    Google Scholar 

  13. Alferov, S.V., Tomashevskaya, L.G., Ponamoreva, O.N., Bogdanovskaya, V.A., and Reshetilov, A.N., Elektrokhimiya, 2006, vol. 42, no. 4, pp. 456–457.

    Google Scholar 

  14. Ryu, J., Kim, H.-S., Hahn, H.T., and Lashmore, D., Biosens. Bioelectron., 2010, vol. 25, pp. 1603–1608.

    Article  CAS  PubMed  Google Scholar 

  15. Palanisamy, S., Cheemalapati, S., and Chen, S.-M., Int. J. Electrochem. Sci., 2012, vol. 7, no. 11, pp. 11477–11487.

    CAS  Google Scholar 

  16. Kumar, G.G., Hashmi, S., Karthikeyan, C., Ghavami Nejad, A., Vatankhah-Varnoosfaderani, M., and Stadler, F.J., Macromol. Rapid Commun., 2014, vol. 35, no. 21, pp. 1861–1865.

    CAS  PubMed  Google Scholar 

  17. Reshetilov, A.N., Kitova, A.E., Kolesov, V.V., and Yaropolov, A.I., Electroanalysis, 2015, vol. 27, no. 6, pp. 1443–1448.

    Article  CAS  Google Scholar 

  18. Gorshenev, V.N., Bibikov, S.B., and Novikov, Yu.N., Zh. Prikl. Khim., 2003, vol. 76, no. 4, pp. 624–627.

    Google Scholar 

  19. Sua, L., Jia, W., Houb, C., and Leia, Y., Biosens. Bioelectron., 2011, vol. 26, no. 5, pp. 1788–1799.

    Article  Google Scholar 

  20. Wang, X., Gu, H., Yin, F., and Tu, Y., Biosens. Bioelectron., 2009, vol. 24, no. 5, pp. 1527–1530.

    Article  CAS  PubMed  Google Scholar 

  21. Do, T.Q.N., Varnicic, M., Flassig, R.J., Vidakovic-Koch, T., and Sundmacher, K., Bioelectrochemistry, 2015, vol. 106, pp. 3–13.

    Article  CAS  PubMed  Google Scholar 

  22. Anicet, N., Bourdillon, C., Demaille, C., Moiroux, J., and Saveant, J.-M., J. Electroanal. Chem., 1996, vol. 410, no. 2, pp. 199–202.

    Article  Google Scholar 

  23. Cass, A.E.G., Davis, G., Francis, G.D., Hill, H.A.O., Aston, W.J., Higgins, I.J., Plotkin, E.V., Scott, L.D.L., and Turner, A.P.F., Anal. Chem., 1984, vol. 56, no. 4, pp. 667–671.

    Article  CAS  PubMed  Google Scholar 

  24. Yuzbasheva, E.Y., Yuzbashev, T.V., Perkovskaya, N.I., Mostova, E.B., Vybornaya, T.V., Sukhozhenko, A.V., Toropygin, I.Y., and Sineoky, S.P., Appl. Biochem. Biotechnol., 2015, vol. 175, no. 8, pp. 3888–3900.

    Article  CAS  PubMed  Google Scholar 

  25. Do, T.Q.N., Varnicic, M., Hanke-Rauschenbach, R., Vidakovic-Koch, T., and Sundmacher, K., Electrochim. Acta, 2014, vol. 137, pp. 616–626.

    Article  CAS  Google Scholar 

  26. Ivanov, I., Vidakovic-Koch, T., and Sundmacher, K., J. Electroanal. Chem., 2013, vol. 690, pp. 68–73.

    Article  CAS  Google Scholar 

  27. Bond, A.M., Bano, K., Adeel, S., Martin, L.L., and Zhang, J., ChemElectroChem, 2014, vol. 1, no. 1, pp. 99–107.

    Article  Google Scholar 

  28. Kowalewska, B. and Kulesza, P.J., Electroanalysis, 2009, vol. 21, nos. 3–5, pp. 351–359.

    Article  CAS  Google Scholar 

  29. Wu, X., Wang, X., and Lu, W., Biosystems, 2014, vol. 117, pp. 10–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Reshetilov.

Additional information

Original Russian Text © A.N. Reshetilov, Yu.V. Plekhanova, S.E. Tarasov, V.A. Arlyapov, V.V. Kolesov, M.A. Gutorov, P.M. Gotovtsev, R.G. Vasilov, 2017, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2017, Vol. 53, No. 1, pp. 115–122.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshetilov, A.N., Plekhanova, Y.V., Tarasov, S.E. et al. Effect of some carbon nanomaterials on ethanol oxidation by Gluconobacter oxydans bacterial cells. Appl Biochem Microbiol 53, 123–129 (2017). https://doi.org/10.1134/S0003683817010161

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817010161

Keywords

Navigation