Skip to main content
Log in

Prospects of the use of bacteriophage-based virus-like particles in the creation of anthrax vaccines

  • Biologicals Technology
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The profitability of vaccine production is less than that of other pharmaceutical goods worldwide. Thus, the cost of the vaccine substance determines the range of vaccines available for use. This is of particular importance for veterinary vaccines. In this review, we have surveyed the published data on exploited vaccines and concluded that the immunogenicity of antigen substances based on whole virions is higher than that of soluble antigens. The physiological basis of this phenomenon remains unknown; however, it may explain why most of the described recombinant vaccines have not yet been put into practice. All practically implemented antiviral vaccines (except that for hepatitis B) are based on viral substances produced by conventional cultural technologies. In light of this observation, an approach to the development of a universal platform for recombinant vaccines produced in the form of virus-like particles is suggested. To this end, a technique of designing fused bifunctional derivatives of bacteriophage proteins containing antigens of interest should be involved. The approach is depicted with the use of the protective anthrax antigen, a conventional vaccine antigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HEV:

Hepatitis E virus

VLPs:

virus-like particles

gp:

gene product

EF:

edema factor

HA:

hemagglutinin (a glycoprotein found on the surface of influenza viruses)

HBsAg:

hepatitis B surface antigen

LF:

lethal factor

PA:

protective antigen

References

  1. Kiselev, O.I., Korovkin, S.A., Mironov, A.N., Mel’nikov, S.Ya, Dyldina, N.V., Erofeeva, M.K., Sominina, A.A., Voytsekhovskaya, E.M., and Stukova, M.A., Results of preclinical investigations in reactogenicity, safety and immunogenicity of greenfor vaccine on aged contingent, 60 years old and over, Epidemiol. Vaktsinoprofilakt., 2008, vol. 41, no. 4, pp. 36–39.

    Google Scholar 

  2. Lozovoi, D.A., Mikhalishin, V.V., Mikhalishin, D.V., Starikov, V.A., Lezova, T.N., Borisov, A.V., Yurchishin, V.D., Smolenskii, V.I., and Ulasov, V.I., Inactivated adsorbed vaccine against foot and mouth disease type A, RF Patent No. 2526570, 2014.

    Google Scholar 

  3. Mikshis, N.I., Popov, Yu.A., Drozdov, I.G., and Kutyrev, V.V., A Bacillus anthracis KM92 strain, a producer of anthrax antigens, RF Patent No. 2180916, 2001.

    Google Scholar 

  4. Sadovoi, N.V., Kravets, I.D., Selivanenko, G.M., Kharechko, G.S., Sadovaya, E.A., Vasil’ev, P.G., Litusov, N.V., Elagin, G.D., and Supotnitskii, M.V., Anthrax combined vaccine, RF Patent No. 2115433, 1998.

    Google Scholar 

  5. Blokhina, E.A., Kuprianov, V.V., Tsybalova, L.M., Kiselev, O.I., Ravin, N.V., and Skryabin, K.G., A molecular assembly system for presentation of antigens on the surface of HBC virus-like particles, Virology, 2013, vol. 435, pp. 293–300.

    Article  CAS  PubMed  Google Scholar 

  6. Chroboczek, J., Szurgot, I., and Szolajska, E., Viruslike particles as vaccine, Acta Biochim. Pol., 2014, vol. 61, no. 3, pp. 531–539.

    PubMed  Google Scholar 

  7. Bennett, K.M., Gorham, R.D., Jr., Gusti, V., Trinh, L., Morikis, D., and Lo, D.D., Hybrid flagellin as a T cell independent vaccine scaffold, BMC Biotechnol., 2015, vol. 15, p. 71.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lim, J.S., Ngeuen, K.C., Han, J.M., Jang, I.S., Fabian, C., and Cho, K.A., Direct regulation of TLR5 expression by caveolin-1, Mol. Cells, 2015, vol. 38, pp. 1111–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ginzburg, A.L., Lunin, V.G., and Kariagina-Zhulina, A.S., Innovation aspects of design of nanovaccines and diagnostic test systems, Innovations, 2007, no. 12, pp. 62–67.

    Google Scholar 

  10. Garlapati, S., Eng, N.F., Kiros, T.G., Kindrachuk, J., Mutwiri, G.K., Hancock, R.E., Halperin, S.A., Potter, A.A., Babiuk, L.A., and Gerdts, V., Immunization with PCEP microparticles containing pertussis toxoid, CpG ODN and a synthetic innate defense regulator peptide induces protective immunity against pertussis, Vaccine, 2011, vol. 29, no. 38, pp. 6540–6548.

    Article  CAS  PubMed  Google Scholar 

  11. Czyz, M., Dembczyski, R., Marecik, R., and Pniewski, T., Stability of S-HBsAg in long-term stored lyophilized plant tissue, Biologicals, 2016. pii: S1045-1056 (15) 00137-2

    Google Scholar 

  12. Zahid, M., Lunsdorf, H., and Rinas, U., Assessing stability and assembly of the hepatitis b surface antigen into virus-like particles during down-stream processing, Vaccine, 2015, vol. 33, no. 31, pp. 3739–3745.

    Article  CAS  PubMed  Google Scholar 

  13. Scheller, E.V. and Cotter, P.A., Bordetella filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential, Pathol. Dis., 2015, vol. 73, no. 8.

    Google Scholar 

  14. Zhang, X., Robust manufacturing and comprehensive characterization of recombinant hepatitis E virus-like particles in hecolin, Wei, M., Pan, H., Lin, Z., Wang, K., Weng, Z., Zhu, Y., Xin, L., Zhang, J., Li, S., Xia, N., and Zhao, Q., Vaccine, 2014, vol. 32, no. 32, pp. 4039–4050.

    Google Scholar 

  15. Proffitt, A., First hev vaccine approved, Nature Biotechnol., 2012, vol. 30, no. 4, pp. 300–301.

    Article  CAS  Google Scholar 

  16. Park, S.B., Hepatitis E vaccine debuts, Nature, 2012, vol. 491, no. 7422, pp. 21–22.

    Article  CAS  PubMed  Google Scholar 

  17. Zeltins, A., Construction and characterization of viruslike particles: a review, Mol. Biotechnol., 2013, vol. 53, no. 1, pp. 92–107.

    Article  CAS  PubMed  Google Scholar 

  18. Lagoutte, P., Mignon, C., Donnat, S., Stadthagen, G., Mast, J., Sodoyer, R., Lugari, A., and Werle, B., Scalable chromatography-based purification of virus-like particle carrier for epitope based influenza A vaccine produced in Escherichia coli, J. Virol. Meth., 2016, vol. 232, no. 8, pp. 11–15.

    Google Scholar 

  19. Mullaney, J.M. and Black, L.W., Bacteriophage T4 capsid packaging and unpackaging of DNA and proteins, Meth. Mol. Biol., 2014, vol. 1108, pp. 69–85.

    Article  CAS  Google Scholar 

  20. Mairhofer, J., Schrlk T., Arisch, M, Cserjan-Puschmann, M., and Striedner, G., Comparative transcription profiling and in-depth characterization of plasmid-based and plasmid-free Escherichia coli expression systems under production conditions, Appl. Environ. Microbiol., 2013, vol. 79, no. 12, pp. 3802–3812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ebrahimizadeh, W., m. rajabibazl, Bacteriophage vehicles for phage display: biology, mechanism, and application, Curr. Microbiol., 2014, vol. 69, no. 2, pp. 109–120.

    Article  CAS  PubMed  Google Scholar 

  22. Rakonjac, J., Bennett, N.J., Spagnuolo, J., Gagic, D., and Russel, M., Filamentous bacteriophage: biology, phage display and nanotechnology applications, Curr. Issues. Mol. Biol., 2011, vol. 13, no. 2, pp. 51–76.

    CAS  PubMed  Google Scholar 

  23. Marvin, D.A., Symmons, M.F., and Straus, S.K., Structure and assembly of filamentous bacteriophages, Prog. Buophys. Mol. Biol., 2014, vol. 114, no. 2, pp. 80–122.

    Article  CAS  Google Scholar 

  24. Taufik, I., Kedrov, A., Exterkate, M., and Driessen, A.J., Monitoring the activity of single translocons, J. Mol. Biol., 2013, vol. 425, no. 22, pp. 4145–4153.

    Article  CAS  PubMed  Google Scholar 

  25. Danner, S. and Belasco, J.G., T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 98, no. 23, pp. 12954–12959.

    Article  Google Scholar 

  26. Oh, B., Moyer, C.L., Hendrix, R.W., and Duda, R.L., The delta domain of the HK97 major capsid protein is essential for assembly, Virology, 2014, vol. 456, pp. 71–78.

    Google Scholar 

  27. Gan, L., Speir, J.A., Conway, J.F., Lander, G., Cheng, N., Firek, B.A., Hendrix, R.W., Duda, R.L., Liljas, L., and Johnson, J.E., Capsid conformational sampling in HK97 maturation visualized by X-ray crystallography and cryo-EM, Structure, 2006, vol. 14, no. 11, pp. 1655–1665.

    Article  PubMed  Google Scholar 

  28. Wikoff, W.R., Conway, J.F., Tang, J., Lee, K.K., Gan, L., Cheng, N., Duda, R.L., Hendrix, R.W., Steven, A.C., and Johnson, J.E., Time-resolved molecular dynamics of bacteriophage HK97 capsid maturation interpreted by electron cryo-microscopy and X-ray crystallography J. Struct. Biol., 2006, vol. 153, no. 3, pp. 300–306.

    Article  CAS  PubMed  Google Scholar 

  29. Fokine, A. and Rossmann, M.G., Molecular architecture of tailed double-stranded DNA phages, Bacteriophage, 2014, vol. 4, no. 1).

    Google Scholar 

  30. Fokine, A., Islam, M.Z., Zhang, Z., Bowman, V.D., Rao, V.B., and Rossmann, M.G., Structure of the three N-terminal immunoglobulin domains of the highly immunogenic outer capsid protein from a T4-like bacteriophage, J. Virol., 2011, vol. 85, no. 16, pp. 8114–8148.

    Article  Google Scholar 

  31. Barr, J.J., Auro, R., Furlan, M., Whiteson, K.L., Erb, M.L., Pogliano, J., Stotland, A., Wolkowicz, R., Cutting, A.S., Doran, K.S., Salamon, P., Youle, M., and Rohwer, F., Bacteriophage adhering to mucus provide a non-host-derived immunity, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 26, pp. 10771–10776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zivanovic, Y, Confalonieri, F., Ponchon, L., Lurz, R., Chami, M., Flayahn, A., Renouard, M., Huet, A., Decottignies, P., Davidson, A.R., Breyton, C., and Boulanger, P., Insights into bacteriophage T5 structure from analysis of its morphogenesis genes and protein components, J. Virol., 2014, vol. 88, no. 2, pp. 1162–1174.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Huet, A., Conway, J.F., Letellier, L., and Boulanger, P., In vitro assembly of the T = 13 procapsid of bacteriophage T5 with its scaffolding domain, J. Virol., 2010, vol. 84, no. 18, pp. 9350–9358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huet, A., Duda, R.L., Hendrix, R.W., Boulanger, P., and Conway, J.F., Correct assembly of the bacteriophage T5 procapsid requires both the maturation protease and the portal complex, J. Mol. Biol., 2016, vol. 428, no. 1, pp. 165–181.

    Article  CAS  PubMed  Google Scholar 

  35. Preux, O., Durand, D., Huet, A., Conway, J.F., Bertin, A., Boulogne, C., Drouin-Wahbi, J., Treévarin, D., Peérez, J., Vachette, P., and Boulanger, P., A two-state cooperative expansion converts the procapsid shell of bacteriophage T5 into a highly stable capsid isomorphous to the final virion head, J. Mol. Biol., 2013, vol. 425, no. 11, pp. 1999–2014.

    Article  CAS  PubMed  Google Scholar 

  36. Chagn, J.R., Spliman, M.S., and Dokland, T., Assembly of bacteriophage P2 capsids from capsid protein fused to internal scaffolding protein, Virus Genes, 2010, vol. 40, no. 2, pp. 298–306.

    Article  Google Scholar 

  37. Berche, P., Louis Pasteur, from crystals of life to vaccination, Clin. Microbiol. Infect., 2012, vol. 18, no. 5, pp. 1–6.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, S., Moayeri, M., and Leppla, S.H., Anthrax lethal and edema toxins in anthrax pathogenesis, Trends Microbiol., 2014, vol. 22, no. 6, pp. 317–325.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zakowska, D., Bartoszcze, M., Niemcewicz, M., Bielawska-Dro’zd, A., and Kocik, J., New aspects of the infection mechanisms of Bacillus anthracis, Ann. Agric. Environ. Med, 2012, vol. 19, no. 4, pp. 613–618.

    CAS  PubMed  Google Scholar 

  40. Wang, H.C., An, H.J., Yu, Y.Z., and Xu, Q., Potentiation of anthrax vaccines using protective antigenexpressing viral replicon vectors, Immunol. Lett., 2014. pii S0165-2478 (14) 00152-7

    Google Scholar 

  41. Liu, S., Zhang, Y., Hoover, B., and Leppla, S.H., The receptors that mediate the direct lethality of anthrax toxin, Toxins (Basel), 2012, vol. 5, no. 1, pp. 1–8.

    Article  Google Scholar 

  42. Lowe, D.E. and Glomski, I.J., Cellular and physiological effects of anthrax exotoxin and its relevance to disease, Front. Cell Infect. Microbiol., 2012, no. 2, pp. 76–82.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dhasmana, N., Singh, L.K., Bhaduri, A., Misra, R., and Singh, Y., Recent developments in anti-dotes against anthrax, Recent Pat. Antiinfect. Drug Discov., 2014, vol. 9, no. 2, pp. 83–96.

    Article  CAS  PubMed  Google Scholar 

  44. Kaur, M., Singh, S., and Bhatnagar, R., Anthrax vaccines: present status and future prospects, Vaccines, 2013, vol. 12, no. 8, pp. 955–970.

    CAS  Google Scholar 

  45. Garman, L., Smith, K., Farris, A.D., Nelson, M.R., Engler, R.J., and James J.A., Protective antigen-specific memory B cells persist years after anthrax vaccination and correlate with humoral immunity, Toxins (Basel), 2014.

    Google Scholar 

  46. Petosa, C., Collier, R.J., Klimpel, K.R., Leppla, S.H., and Liddington R.C., Crustal structure of the anthrax toxin protective antigen, Nature, 1997, vol. 385, no. 6619, pp. 833–838.

    Article  CAS  PubMed  Google Scholar 

  47. Feld, G.K., Thoren, K.L., Kintzer, A.F., Sterling, H.J., Tang, I.I., Greenberf, S.G., Williams, E.R., and Krantz, B.A., Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers, Nat. Struct. Mol. Biol., 2007, vol. 17911.

    Google Scholar 

  48. Santelli, E., Bankston, L.A., Leppla, S.H., and Liddington, R.C., Crystal structure of a complex between anthrax toxin and its host cell receptor, Nature, 2004, vol. 430, no. 7002, pp. 905–908.

    Article  CAS  PubMed  Google Scholar 

  49. Rezaee, M., Honari, H., and Kooshk, M.R., Cloning, expression and purification of binding domains of lethal factor and protective antigen of Bacillus anthracis in Escherichia coli and evaluation of their related murine antibody, Mol. Biol. Rep., 2014, vol. 41, no. 4, pp. 2445–2452.

    Article  CAS  PubMed  Google Scholar 

  50. Ma, Y., Yu, Y.Z., Zhu, Y.F., Xu, Q., and Sun, Z.W., In vitro and in vivo activities of recombinant anthrax protective antigen co-expressed with thioredoxin in Escherichia coli, Hum. Vaccin. Immunother., 2013, vol. 9, no. 11, pp. 2371–2377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abboud, N. and Casadevall, A., Immunogenicity of Bacillus anthracis protective antigen domains and efficacy of elicited antibody responses depend on host genetic background, Clin. Vaccine Immunol., 2008, vol. 15, no. 7, pp. 1115–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reason, D.C., Ullal, A., Liberato, J., Sun, J., Keitel, W., and Zhou, J., Domain specificity of the human antibody response to Bacillus anthracis protective antigen, Vaccine, 2008, vol. 26, no. 32, pp. 4041–4047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tedikov, V.M. and Dobrytsa, A.P., Cloning and expression of determinant Bacillus anthracis in Escherichia coli, Bacillus subtilis and Bacillus anthracis cells, Mol. Genet. Mikrobiol. Vurisol., 1993, no. 2, pp. 13–16.

    Google Scholar 

  54. Mikshis, N.I., Popov, Yu.A., and Shulepov, D.V., Asporogenic recombinant Bacillus anthracis 55deltaTPA-1Spo (pUB110PA-1) strain, a producer of protective antigen of anthrax cause, RF Patent No. 2321629, 2008.

    Google Scholar 

  55. Manayani, D.J., Thomas, D., Dryden, K.A., Reddy, V., Siladi, M.E., Marlett, J.M., Rainey, G.J., Pique, M.E., Scobie, H.M., Yeager, M., Young, J.A., Manchester, M., and Schneemann, A., A viral nanoparticle with dual function as an anthrax antitoxin and vaccine, PLoS Pathog., 2007, vol. 3, no. 10, pp. 1422–1431.

    Article  CAS  PubMed  Google Scholar 

  56. Shivachandra, S.B., Li, Q., Peachman, K.K., Matyas, G.R., Leppla, S.H., Alving, C.R., Rao, M., and Rao, V.B., Multicomponent anthrax toxin display and delivery using bacteriophage T4, Vaccine, 2007, vol. 25, no. 7, pp. 1225–1235.

    Article  CAS  PubMed  Google Scholar 

  57. Gamkrelidze, M., T4 bacteriophage as a phage display platform/m. gamkrelidze, k. dnbrowska, Arch. Microbiol., 2014, vol. 196, no. 7, pp. 473–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fraser, J.S., Yu, Z., Maxwell, K.L., and Davidson, A.R., Ig-like domains on bacteriophages: a tale of promiscuity and deceit, J. Mol. Biol., 2006, vol. 359, no. 2, pp. 496–507.

    Article  CAS  PubMed  Google Scholar 

  59. Minot, S., Grunberg, S., Wu, G.D., Lewis, J.D., and Bushman, F.D., Hypervariable loci in the human gut virome, Proc. Natl. Acad. Sci. U. S. A, 2012, vol. 109, no. 10, pp. 3962–3966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Casjens, S.R. and Molineux, I.J., Short noncontractile tail machines: adsorption and DNA delivery by poduviruses, Adv. Exp. Med. Biol., 2012, vol. 726, pp. 143–179.

    Article  CAS  PubMed  Google Scholar 

  61. Onishchenko, G.G., Vasil’ev, N.T., Litusov, N.V., Kharechko, A.T., Vasil’ev, P.G., Sadovoi, N.V., and Kozhukhov, V.V., Sibirskaya yazva: aktual’nye aspekty mikrobiologii, epidemiologii, kliniki, diagnostiki, lecheniya i profilaktika (Antrax: Actual Aspects of Microbiology, Epidemiology, Clinics, Diagnosis, Therapy and Prophylaxis), Moscow: VUNMTs MZ RF, 1999.

    Google Scholar 

  62. Leiman, P.G. and Shneider, M.M., Contractile tail machines of bacteriophages, Adv. Exp. Med. Biol., 2012, vol. 726, pp. 93–114.

    Article  CAS  PubMed  Google Scholar 

  63. Ivins, B., Worsham, P., Friedlander, A., Farchaus, J., and Welkos, S., Method of making a vaccine, US Patent No. 20020034512, 2002.

    Google Scholar 

  64. Abboud, N., de Lesus, M., Nakouzi, A., Cordero, R.J., Pujato, M., Fiser, A., Rivera, J., and Casadevall, A., Identification of linear epitopes in Bacillus anthracis protective antigen bound by neutralizing antibodies, J. Biol. Chem., 2009, vol. 284, no. 37, pp. 25077–25086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Letarov.

Additional information

Original Russian Text © A.V. Letarov, Yu.K. Biryukova, A.S. Epremyan, A.B. Shevelev, 2016, published in Biotekhnologiya, 2016, No. 2, pp. 43–56.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letarov, A.V., Biryukova, Y.K., Epremyan, A.S. et al. Prospects of the use of bacteriophage-based virus-like particles in the creation of anthrax vaccines. Appl Biochem Microbiol 52, 818–827 (2016). https://doi.org/10.1134/S0003683816090040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683816090040

Keywords

Navigation