Skip to main content
Log in

Molecular-genetic and biochemical characteristics of citrate synthase from the citric-acid producing fungus Aspergillus niger

  • Producers, Biology, Selection, Genetic Engineering
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

This review is devoted to achievements in the study of citrate synthase, an enzyme that plays a key role in cell metabolism and catalyzes the process of citric acid synthesis at the first step of the tricarboxylic acid cycle (TCA). The primary industrial producer of citric acid is Aspergillus niger fungus; therefore, the fundamental molecular-genetic and biochemical characteristics of the enzyme from this producer are discussed in comparison with those of other eukaryotes. The information on the mechanisms of the citric acid overproduction in A. niger and its evolutionary features is analyzed. The current review can be helpful in the development of a strategy for the design of more effective producers of organic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MEC:

multi-enzyme complex

PAGE:

poly-acrylamide gel electrophoresis

bp:

base pairs

CS:

citrate synthase

TCA:

tricarboxylic acid cycle

AMP, ADP, ATP:

adenosine monophosphate, diphosphate, triphosphate, respectively

NAD, NADP, NAD+, NADH, NADPH:

nicotinamide adenine dinucleotide and its phosphorylated form, reduced form, oxidized form, phosphorylated reduced form, respectively

ORF:

open reading frame

SDS:

sodium dodecyl sulfate

References

  1. Bentley, R. and Bennett, J.W., A ferment of fermentations: reflections on the production of commodity chemicals using microorganisms, Advan. Appl. Microbiol., 2008, vol. 63, no. 7, pp. 1–32.

    Article  CAS  Google Scholar 

  2. Scazzocchio, C., in Aspergillus: a Multifaceted Genus: Encyclopedia of Microbiology, Boston: Academic Press Inc, 2009, pp. 401–421.

    Google Scholar 

  3. Plassard, C. and Fransson, P., Regulation of lowmolecular weight organic acid production in fungi, Fungal Biol. Rev. Elsevier Ltd., 2009, vol. 23, nos. 1–2, pp. 30–39.

    Article  Google Scholar 

  4. Karaffa, L. and Kubicek C.P., Aspergillus niger citric acid accumulation: do we understand this well working black box?, Appl. Microbiol. Biotechnol., 2003, vol. 61, pp. 189–196.

    Article  CAS  PubMed  Google Scholar 

  5. de Jongh, W.A. and Nielsen, J., Enhanced citrate production through gene insertion in Aspergillus niger, Metab. Eng., 2008, vol. 10, pp. 87–96.

    Article  PubMed  Google Scholar 

  6. Ruijter, G.J.G., Panneman, H., and Visser, J., Overexpression of phosphofructokinase and pyruvate kinase in citric acid-producing Aspergillus niger, Biochim. Biophys. Acta. Gen. Subj., 1997, vol. 1334, pp. 317–326.

    Article  CAS  Google Scholar 

  7. Panneman, H., Ruijter, G.J., van den Broeck, H.C., Driver, E.T., and Visser, J., Cloning and biochemical characterization of an Aspergillus niger glucokinase. Evidence for the presence of separate glucokinase and hexokinase enzymes, Eur. J. Biochem., 1996, vol. 240, no. 3, pp. 518–525.

    Article  CAS  PubMed  Google Scholar 

  8. Panneman, H., Ruijter, G.J., van den Broeck, H.C., Driver, E.T., and Visser, J., Cloning and biochemical characterization of Aspergillus niger hexokinase—the enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate, Eur. J. Biochem., 1998, vol. 258, no. 1, pp. 223–232.

    Article  CAS  PubMed  Google Scholar 

  9. Park, B.W., Han, K.H., Lee, C.Y., Lee, C.H., and Maeng, P.J., Cloning and characterization of the citA gene encoding the mitochondrial citrate synthase of Aspergillus nidulans, Mol. Cells, 1997, vol. 7, no. 2, pp. 290–295.

    CAS  PubMed  Google Scholar 

  10. Kirimura, K., Masashi, Y., Ikuyo, K., Oshida, Y., Miyake, K., and Usami, S., Cloning and sequencing of the chromosomal DNA and cDNA encoding the mitochondrial citrate synthase of Aspergillus niger WU-2223l J. Biosci. Bioeng., 1999, vol. 88, no. 3, pp. 237–243.

    Article  CAS  PubMed  Google Scholar 

  11. Ruijter, G.J.G., Panneman, D.B., Xu, J., and Visser, H., Properties of citrate synthase and effects of citA overexpression on citric acid production, FEMS Microbiol. Letts., 2000, vol. 184, pp. 35–40.

    Article  CAS  Google Scholar 

  12. Krebs, H.A., Lowensten, J.M., and Greenberg, D.M., Metabolic Pathways, New York: Academic Press, 1960.

    Google Scholar 

  13. Weigand, G. and Remington, S.J., Citrate synthase: structure, control, and mechanism, Annu. Rev. Biophys. Biophys. Chem., 1986, vol. 15, pp. 97–117.

    Article  Google Scholar 

  14. Ashworth, J.M., Kornberg, H.L., and Nothmann, D.L., Location of the structural gene for citrate synthase on the chromosome of Escherichia coli K12, J. Mol. Biol., 1965, vol. 11, pp. 654–657.

    Article  CAS  PubMed  Google Scholar 

  15. Jia, Y.K., Be’cam, A.M., and Herbert, C.J., The CIT3 gene of Saccharomyces cerevisiae encodes a second mitochondrial isoform of citrate synthase Mol. Microbiol., 1997, vol. 24, no. 1, pp. 53–59.

    Article  CAS  PubMed  Google Scholar 

  16. Graybill, E.R., Mathhew, F.R., Kirby, C.E., and Hawes, J.W., Functional comparison of citrate synthase isoforms from S. cerevisia, Arch. Biochem. Biophys., 2007, vol. 465, pp. 26–37.

    Article  CAS  PubMed  Google Scholar 

  17. Beevers, H., Microbodies in higher plants, Annu. Rev. Plant Physiol., 1979, vol. 30, no. 1, pp. 159–193.

    Article  CAS  Google Scholar 

  18. Tolbert, N.E., Metabolic pathways in peroxisomes and glyoxysomes, Annu. Rev. Biochem., 1981, vol. 50, pp. 133–157.

    Article  CAS  PubMed  Google Scholar 

  19. Jaklitsch, W.M., Kubicek, C.P., and Scrutton, M.C., Intracellular location of enzymes involved in citrate production by Aspergillus niger, Can. J. Microbiol., 1991, vol. 37, pp. 823–827.

    Article  CAS  PubMed  Google Scholar 

  20. Kubicek, C.P., Punt, P., and Visser, J., Production of Organic Acids by Filamentous Fungi: Industrial Applications, Hofrichter, M., Ed., Berlin: Springer, 2011, pp. 215–234.

  21. Graham, J.M., Preparation of crude subcellular fractions by differential centrifugation, Sci. World J., 2002, vol. 2, pp. 1638–1642.

    Article  Google Scholar 

  22. Ernster, L. and Kyulenstierna, B., Outer Membrane of Mitochondria: Membranes of Mitochondria and Chloroplasts, Racker, E., Ed., Princeton: Van Nostrand Reinhold, 1970, pp. 172–212.

  23. D’Souza, S.F. and Srere, P.A., Binding of citrate synthase to mitochondrial inner membranes, J. Biol. Chem., 1983, vol. 258, pp. 4706–4709.

    PubMed  Google Scholar 

  24. Lewis, K.F. and Weinhouse, S., Studies on the Mechanism of Citric Acid Production in Aspergillus niger, J. Am. Chem. Soc., 1951, vol. 73, no. 6, pp. 2500–2503.

    Article  CAS  Google Scholar 

  25. Bomstein, R.A. and Johnson, M.J., The mechanism of formation of citrate and oxalate by Aspergillus niger, J. Biol. Chem., 1952, vol. 198, no. 1, pp. 143–153.

    CAS  PubMed  Google Scholar 

  26. Cleland, W.W. and Johnson, M.J., Tracer experiments on the mechanism of citric acid formation by Aspergillus niger, J. Biol. Chem., 1954, vol. 208, no. 2, pp. 679–689.

    CAS  PubMed  Google Scholar 

  27. Shu, P., Funk, A., and Neish, A.C., Mechanism of citric acid formation from glucose by Aspergillus niger, Can, J. Phys., 1954, vol. 32, no. 1, pp. 68–80.

    CAS  Google Scholar 

  28. Mahnuson, J.K. and Lasure, L.L., Organic acid production by filamentous fungi, Adv. Fungal Biotechnol. Ind. Agric. Med., 2004, pp. 307–340.

    Google Scholar 

  29. Liu, J.H., Chi, G.H., Jia, C.H., Zhang, J.B., Xu, B.Y., and Jin, Z.Q., Function of a citrate synthase gene (MaGCS) during postharvest banana fruit ripening, Postharvest Biol. Technol, 2013, vol. 84, pp. 43–50.

    Article  CAS  Google Scholar 

  30. Jones, D.L., Organic acids in the rhizosphere—a critical review, Plant Soil, 1998, vol. 205, no. 1, pp. 25–44.

    Article  CAS  Google Scholar 

  31. Ratledge, C., Look before you clone, FEMS Microbiol. Letts., 2000, vol. 189, pp. 317–318.

    CAS  Google Scholar 

  32. Pel, H.J., de Winde, J.H., Archer, D.B., Dyer, P.S., Hofmann, G., Schaap, P.J., and Turner, G., Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88, Nat. Biotechnol., 2007, vol. 25, no. 2, pp. 221–231.

    Article  PubMed  Google Scholar 

  33. Kholodenko, B.N., Cascante, M., and Westerhoff, H.V., Control theory of metabolic channeling, Mol. Cell. Biochem., 1995, vol. 143, no. 2, pp. 151–168.

    Article  CAS  PubMed  Google Scholar 

  34. Russell, R.J., Gerike, U., Danson, M.J., Hough, D.W., and Taylor, G.L., Structural adaptations of the coldactive citrate synthase from an Antarctic bacterium, Structure, 1998, vol. 6, no. 3, pp. 351–361.

    Article  CAS  PubMed  Google Scholar 

  35. Neupert, W. and Schatz, G., How proteins are transported into mitochondria, Trends Biochem. Sci., 1981, vol. 6, pp. 1–4.

    Article  CAS  Google Scholar 

  36. Alam, T., Finkelstein, D., and Srere, P.A., In vitro translation of mRNA for yeast citrate synthase J. Biol. Chem., 1982, vol. 257, no. 18, pp. 11181–11185.

    CAS  PubMed  Google Scholar 

  37. Curr, S.J., Unkles, S.E., and Kinghorn, J.R., The structure and organization of nuclear genes of filamentous fungi, Spec. Publ. Soc. Gen. Microbiol., 1987, vol. 22, pp. 93–139.

    Google Scholar 

  38. Jones, M.G., The first filamentous fungal genome sequences: Aspergillus leads the way for essential everyday resources or dusty museum specimens?, Microbiology, 2007, vol. 153, no. 1, pp. 1–6.

    Article  CAS  PubMed  Google Scholar 

  39. Dave, K. and Punekar, N.S., Utility of Aspergillus niger citrate synthase promoter for heterologous expression, J. Biotechnol., 2011, vol. 155, no. 2, pp. 173–177.

    Article  CAS  PubMed  Google Scholar 

  40. Maerker, C., Ronde, M., Brakhage, A., and Brock, M., Methylcitrate synthase from Aspergillus fumigatus: propionyl- CoA affects polyketide synthesis, growth and morphology of conidia FEBS J, 2005, vol. 272, pp. 3615–3630.

    Article  CAS  PubMed  Google Scholar 

  41. Flipphi, M., Sun, J., Robellet, X., Karaffa, L., Fekete, E., Zneg, A.P., and Kubiecek, C.P., Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp., Fungal Genet. Biol., 2009, vol. 46, no. 1, pp. S19–S44.

    Article  CAS  PubMed  Google Scholar 

  42. Sun, J., Lu, X., Rinas, U., and Zeng, A.P., Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics, Genome Biol., 2007, vol. 8, no. 9, p. R182.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kubicek, C.P. and Rohr, M., Regulation of citrate synthase from the citric acid-accumulating fungus, Aspergillus niger, Biochim. Biophys. Acta, 1980, vol. 615, no. 2, pp. 449–457.

    CAS  PubMed  Google Scholar 

  44. Williamson, J.R., and Cooper, R.H., Regulation of the citric acid cycle in mammalian systems, FEBS Lett., 1980, vol. 117 (suppl.), pp. K73–K85.

    Article  PubMed  Google Scholar 

  45. Beeckmans, S., Some structural and regulatory aspects of citrate synthase, Int. J. Biochem., 1984, vol. 16, no. 4, pp. 341–351.

    Article  CAS  PubMed  Google Scholar 

  46. Ahmed, S.A., Smith, J.E., and Anderson, J.G., Mitochondrial activity during citric acid production by Aspergillus niger, Transact. British Mycol. Soc., 1972, vol. 59, no. 1, pp. 51–61.

    Article  CAS  Google Scholar 

  47. Kubicek, C.P., Rohr, M., and Rehm, H.J., Citric acid fermentation, Criti. Rev. Biotechnol., 1985, vol. 3, no. 4, pp. 331–373.

    Article  Google Scholar 

  48. Pogson, C.I. and Wolfe, R.G., Oxaloacetic acid. Tautomeric and hydrated forms in solution, Biochem. Biophys. Res. Commun., 1972, vol. 46, no. 3, pp. 1048–1054.

    Article  CAS  PubMed  Google Scholar 

  49. Pazouki, M., Felse, P.A., Sinha, J., and Panda, T., Comparative studies on citric acid production by Aspergillus niger and Candida lipolytica using molasses and glucose, Bioproc. Eng., 2000, vol. 22, pp. 0353–0361.

    Article  CAS  Google Scholar 

  50. Barrington, S. and Kim, J.W., Response surface optimization of medium components for citric acid production by Aspergillus niger NRRL 567 grown in peat moss, Bioresour. Technol., 2008, vol. 99, pp. 368–377.

    Article  CAS  PubMed  Google Scholar 

  51. Manonmani, H.K. and Sreekantiah, K.R., Citric acid production by a selected isolate of aspergillus niger in defined media, J. Microb. Biotechnol., 1989, vol. 4, no. 2, pp. 75–79.

    CAS  Google Scholar 

  52. Bayer, E., Bayer, E., Bauer, B., and Eggerer, H., Evidence from inhibitor studies for conformational changes of citrate synthase, Eur. J. Biochem., 1981, vol. 120, pp. 155–160.

    Article  CAS  PubMed  Google Scholar 

  53. Wieland, O. and Weiss, L., Inhibition of citrate-synthase by palmityl-coenzyme A, Biochem. Biophys. Res. Commun., 1963, vol. 13, pp. 26–31.

    Article  CAS  PubMed  Google Scholar 

  54. Caggiano, A.V. and Powell, G.L., Regulation of enzymes by fatty acyl coenzyme A. Site-specific binding of fatty acyl coenzyme A by citrate synthase—a spin-labeling study, J. Biol. Chem., 1979, vol. 254, no. 8, pp. 2800–2806.

    CAS  PubMed  Google Scholar 

  55. Papagianni, M., Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling, Biotechnol. Adv., 2007, vol. 25, no. 3, pp. 244–263.

    Article  CAS  PubMed  Google Scholar 

  56. Cordewener, J., Busink, R., and Visser, J., A permeabilized cell assay system for studying enzyme regulation and localization in Aspergillus niger, J. Microbiol. Methods, 1989, vol. 10, pp. 231–240.

    Article  CAS  Google Scholar 

  57. Sols, A. and Marco, R., Concentrations of Metabolites and Binding Sites. Implications in Metabolic Regulation: Current Topics in Cellular Regulation, Bernard, L.H. and Stadtman, E.R., Eds., London: Academic Press, 1970, vol. 2, pp. 227–273.

  58. Moriyama, T., and Srere, P.A., Purification of rat and rat liver citrate synthases. physical, kinetic, and immunological studies, J. Biol. Chem., 1971, vol. 246, no. 10, pp. 3217–3223.

    CAS  PubMed  Google Scholar 

  59. Beeckmans, S. and Kanarek, L., Purification and physicochemical characterization of chicken heart citrate synthase, Int. J. Biochem., 1983, vol. 15, no. 4, pp. 469–478.

    Article  CAS  PubMed  Google Scholar 

  60. Remington, S., Wiegand, G., and Huber, R., Crystallographic refinement and atomic models of two different forms of citrate synthase at 2.7 and 1.7 A resolution, J. Mol. Biol., 1982, vol. 158, no. 1, pp. 111–152.

    Article  CAS  PubMed  Google Scholar 

  61. Roccatano, D., Mark, A.E., and Hayward, S., Investigation of the mechanism of domain closure in striate synthase by molecular dynamics simulation, J. Mol. Biol., 2001, vol. 310, pp. 1039–1053.

    Article  CAS  PubMed  Google Scholar 

  62. Brent, L.G. and Srere, P.A., The interaction of yeast citrate synthase with yeast mitochondrial inner membranes, J. Biol. Chem., 1987, vol. 262, no. 1, pp. 319–325.

    CAS  PubMed  Google Scholar 

  63. Kispal, G. and Srere, P.A., Studies on yeast peroxisomal citrate synthase, Arch. Biochem. Biophys., 1991, vol. 286, no. 1, pp. 132–137.

    Article  CAS  PubMed  Google Scholar 

  64. Hackenbrock, C.R., Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states, Proc. Natl. Acad. Sci. U.S.A., 1968, vol. 61, no. 2, pp. 598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Capaldi, R.A., Arrangement of proteins in the mitochondrial inner membrane, Biochim. Biophys. Acta, 1982, vol. 694, no. 3, pp. 291–306.

    Article  CAS  PubMed  Google Scholar 

  66. Beeckmans, S., and Kanarek, L., Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate–malate shuttle. A study involving fumarase, malate dehydrogenase, citrate synthesis and aspartate aminotransferase, Eur. J. Biochem., 1981, vol. 117, no. 3, pp. 527–535.

    Article  CAS  PubMed  Google Scholar 

  67. Srere, P.A., Sherry, A.D., Malloy, C.R., and Sumegi, B., Channeling in Intermediary Metabolism, London, UK: Portland Press, 1997.

    Google Scholar 

  68. Morgunov, I. and Srere, P.A., Interaction between citrate synthase and malate dehydrogenase: substrate channeling of oxaloacetate, J. Biol. Chem., 1998, vol. 273, pp. 29540–29544.

    Article  CAS  PubMed  Google Scholar 

  69. Datta, A., Merz, J.M., and Spivey, H.P., Substrate channeling of oxaloacetate in solid-state complexes of malate dehydrogenase and citrate synthesis, J. Biol. Chem., 1985, vol. 260, no. 28, pp. 15008–15012.

    CAS  PubMed  Google Scholar 

  70. Lindbladh, C., Rault, M., Hagglund, C., Small, W.C., Mosbach, K., Bulow, L., Evans, C., and Srere, P.A., Preparation and kinetic characterization of a fusion protein of yeast mitochondrial citrate synthase and malate dehydrogenase, Biochemistry, 1994, vol. 33, no. 39, pp. 11692–11698.

    Article  CAS  PubMed  Google Scholar 

  71. Shatalin, K., Lebreton, S., Rault-Leonardon, M., Vélot, C., and Srere, P.A., Electrostatic channeling of oxaloacetate in a fusion protein of porcine citrate synthase and porcine mitochondrial malate dehydrogenase, Biochemistry, 1999, vol. 38, no. 3, pp. 881–889.

    Article  CAS  PubMed  Google Scholar 

  72. Elcock, A.H. and Mccammon, J.A., Evidence for electrostatic channeling in a fusion protein of malate dehydrogenase and citrate synthase, Biochemistry, 1996, vol. 35, no. 39, pp. 12652–12658.

    Article  CAS  PubMed  Google Scholar 

  73. Vélot, C., Mixon, M.B., Teige, M., and Srere, P.A., Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon, Biochemistry, 1997, vol. 36, no. 47, pp. 14271–14276.

    Article  PubMed  Google Scholar 

  74. Bayer, E., Bauer, B., and Eggerer, H., Chemical modification of citrate synthase, FEBS Lett., 1981, vol. 127, no. 1, pp. 101–104.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Alekseev.

Additional information

Original Russian Text © K.V. Alekseev, M.V. Dubina, V.P. Komov, 2016, published in Biotekhnologiya, 2016, No. 1, pp. 11–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, K.V., Dubina, M.V. & Komov, V.P. Molecular-genetic and biochemical characteristics of citrate synthase from the citric-acid producing fungus Aspergillus niger . Appl Biochem Microbiol 52, 810–817 (2016). https://doi.org/10.1134/S0003683816090027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683816090027

Keywords

Navigation