Advertisement

Applied Biochemistry and Microbiology

, Volume 52, Issue 4, pp 457–463 | Cite as

Immunodetection of bacteriophages by a piezoelectric resonator with lateral electric field

  • O. I. GuliyEmail author
  • B. D. Zaitsev
  • A. M. Shikhabudinov
  • A. A. Teplykh
  • I. A. Borodina
  • S. A. Pavliy
  • O. S. Larionova
  • A. S. Fomin
  • S. A. Staroverov
  • L. A. Dykman
  • O. V. Ignatov
Article

Abstract

It has been demonstrated that electroacoustic analysis with polyclonal antibodies can be used for bacteriophage detection. The frequency dependences of the real and imaginary parts of electrical impedance of a resonator with a viral suspension with antibodies were shown to be essentially different from the dependences of a resonator with control viral suspension without antibodies. It was shown that ΦAl-Sp59b bacteriophages were detected with the use of antibodies in the presence of foreign virus particles. The ΦAl-Sp59b bacteriophage content in the analyzed suspension was ~1010–106 phages/mL; the time of analysis was no more than 5 min. The optimally informative parameter for obtaining reliable information was the change in the real or imaginary part of electrical impedance at a fixed frequency near the resonance upon the addition of specific antibodies to the analyzed suspension. It was demonstrated that the interaction between bacteriophages and antibodies can be recorded, offering good prospects for the development of a biological sensor for liquid-phase identification and virus detection.

Keywords

bacteriophages Azospirillum lipoferum Sp59b antibodies electro-acoustic technique lateral-field piezoelectric resonator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yousef, A.E., in Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, Zourob, M., Elwary, S., and Turner, A.P.F., Eds., New York: Springer, 2008, pp. 31–48.Google Scholar
  2. 2.
    Carter, V., Saunders Virology: Principles and Applications, London: J. Wiley and Sons, 2007.Google Scholar
  3. 3.
    Uttenthaler, E., Schräml, M., Mandel, J., and Drost, S., Biosens. Bioelectron, 2001, vol. 16, nos. 9–12, pp. 735–743.CrossRefPubMedGoogle Scholar
  4. 4.
    Kurosawa, S., Park, J.W., Aizawa, H., Wakida, S., Tao, H., and Ishihara, K., Biosens. Bioelectron., 2006, vol. 22, no. 4, pp. 473–481.CrossRefPubMedGoogle Scholar
  5. 5.
    Tamarin, O., Comeau, S., Déjous, C., Moynet, D., Rebière, D., Bezian, J., and Pistréa, J., Biosens. Bioelectron., 2003, vol. 18, nos 5-6, pp. 755–763.CrossRefPubMedGoogle Scholar
  6. 6.
    Koenig, B., Anal. Chem., 1994, vol. 66, no. 3, pp. 341–348.CrossRefGoogle Scholar
  7. 7.
    Bisoffi, M., Hjelle, B., Brown, D.C., Branch, D.W., Edwards, T.L., Brozik, S.M., Bondu-Hawkins, V.S., and Larson, R.S., Biosens. Bioelectron., 2008, vol. 23, no. 9, pp. 1397–1403.CrossRefPubMedGoogle Scholar
  8. 8.
    Tarantola, M., Marel, A.-K., Sunnick, E., Adam, H., Wegenerd, J., and Janshoff, A., Integr. Biol., 2010, vol. 2, pp. 139–150.CrossRefGoogle Scholar
  9. 9.
    Xu, Y., Xie, X., Duan, Y., Wang, L., Cheng, Z., and Cheng, J., Biosens. Bioelectron., 2016, vol. 77, pp. 824–836.CrossRefPubMedGoogle Scholar
  10. 10.
    Kim, Y.W., Meyer, M.T., Berkovich, A., Subramanian, S., Iliadis, A.A., Bentley, W.E., and Ghodssi, R., Sens. Actuat. A, 2016, vol. 238, pp. 140–149.CrossRefGoogle Scholar
  11. 11.
    Guliy, O.I., Zaitsev, B.D., Kuznetsova, I.E., Shikhabudinov, A.M., Matora, L.Yu., Makarikhina, S.S., and Ignatov, O.V., Miocrobiology (Moscow), 2013, vol. 82, no. 2, pp. 215–223.Google Scholar
  12. 12.
    Guliy, O.I., Zaitsev, B.D., Kuznetsova, I.E., Shikhabudinov, A.M., Dykman, L.A., Staroverov, S.A., Karavaeva, O.A., Pavlii, S.A., and Ignatov, O.V., Biophysics (Moscow), 2015, vol. 60, no. 4, pp. 592–597.CrossRefGoogle Scholar
  13. 13.
    Guliy, O.I., Zaitsev, B.D., Kuznetsova, I.E., Shikhabudinov, A.M., Karavaeva, O.A., Dykman, L.A., Staroverov, S.A., and Ignatov, O.V., Biophysics (Moscow), 2012, vol. 57, no. 3, pp. 336–342.CrossRefGoogle Scholar
  14. 14.
    Maniatis, T., Fritsch, E. F., and Sambrook, J. Molecular Cloning, Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press, 1982.Google Scholar
  15. 15.
    Smith, G.P. and Scott, J.K., Methods Enzymol., 1993, vol. 217, pp. 228–257.CrossRefPubMedGoogle Scholar
  16. 16.
    Pristenskii, D.V., Staroverov, S.A., Ermilov, D.N., Shchegolev, S.Yu., and Dykman, L.A., Biomed. Khim., 2007, vol. 53, no. 1, pp. 57–64.PubMedGoogle Scholar
  17. 17.
    Frens, G., Nature Phys. Sci., 1973, vol. 241, no. 1, pp. 20–22.CrossRefGoogle Scholar
  18. 18.
    Dykman, L.A., Bogatyrev, V.A., Shchegolev, S.Yu., and Khlebtsov, N.G., Zolotye nanochastitsy: sintez, svoistva, biomeditsinskoe primenenie (Gold Nanoparticles: Synthesis, Properties and Biomedical Applications), Moscow: Nauka, 2008.Google Scholar
  19. 19.
    Beatty, J.D., Beatty, B.G., and Vlahos, W.G., J. Immunol. Meth., 1987, vol. 100, nos. 1–2, pp. 173–179.CrossRefGoogle Scholar
  20. 20.
    Zaitsev, B.D., Kuznetsova, I.E., Shikhabudinov, A.M., and Vasil’ev, A.A., Pis’ma Zh. Tekh. Fiz., 2011, vol. 37, no. 11, pp. 27–33.Google Scholar
  21. 21.
    Biderman, V.L., Teoriya mekhanicheskikh kolebanii (The Theory of Mechanical Vibrations), Moscow: Vysshaya shkola, 1980.Google Scholar
  22. 22.
    Marvin, D.A., Hale, R.D., Nave, C., and Helmer-Citterich, M., J. Mol. Biol., 1994, vol. 235, no. 1, pp. 260–286.CrossRefPubMedGoogle Scholar
  23. 23.
    Overman, S.A., Tsuboi, M., and Thomas, G.J., J. Mol. Biol., 1996, vol. 259, no. 3, pp. 331–336.CrossRefPubMedGoogle Scholar
  24. 24.
    Edwards, P. and Wilson, T., Lab. Prac., 1987, vol. 36, no. 2, pp. 13–17.Google Scholar
  25. 25.
    Berzofski, D.A., Berkover, A.J., Brown, E.J., Joiner, K.A., Frank, M., Hanni, K., Gillis, C., Green, M.I., Schatten, C., Bromberg, J.S., Parker, C.V., Kearney, J.F., Sher, J., Meiji, M.J., Fetmen, S.G., and Fitch, F.W., Fundamental Immunology, 4th ed., Paul, W.E., Ed., Philadelphia: Lippincott Raven, 1984.Google Scholar
  26. 26.
    Makarikhina, S.S., Guliy, O.I., Sokolov, O.I., Burov, A.M., Pavlii, S.A., Sivko, O.N., Volodin, D.Yu., and Ignatov, O.V., Izv. Saratov. Univ., Ser. Khim. Biol. Ecol., 2013, vol. 13, no. 2, pp. 56–61.Google Scholar
  27. 27.
    Guliy, O.I., Zaitsev, B.D., Kuznetsova, I.E., Shikhabudinov, A.M., Balko, A.B., Teplykh, A.A., Staroverov, S.A., Dykman, L.A., Makarikhina, S.S, and Ignatov, O.V., Biophysics (Moscow), 2016, vol. 61, no. 1, pp. 52–59.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • O. I. Guliy
    • 1
    • 2
    • 3
    Email author
  • B. D. Zaitsev
    • 4
  • A. M. Shikhabudinov
    • 4
  • A. A. Teplykh
    • 4
  • I. A. Borodina
    • 4
  • S. A. Pavliy
    • 5
  • O. S. Larionova
    • 2
  • A. S. Fomin
    • 1
    • 3
  • S. A. Staroverov
    • 1
    • 3
  • L. A. Dykman
    • 1
  • O. V. Ignatov
    • 1
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia
  2. 2.Vavilov Saratov State Agrarian UniversitySaratovRussia
  3. 3.Saratov Research Veterinary InstituteRussian Academy of SciencesSaratovRussia
  4. 4.Saratov Branch of the Kotelnikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesSaratovRussia
  5. 5.Chernyshevsky Saratov State UniversitySaratovRussia

Personalised recommendations