Skip to main content
Log in

Three-dimensional matrixes of natural and synthetic origin for cell biotechnology

  • Problems and Prospects
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The review describes the classification, analysis, characteristics, and prospects of the application of various types of matrixes, of natural or synthetic origin, for cell biotechnology. Particular attention is paid to three-dimensional structures designed on the basis of extracellular matrix (ECM) components with multipotent mesenchymal stromal cells (MMSCs). In particular, the authors previously obtained cell populations with a phenotype similar to MMSCs from farm animal bone marrow (BM) and adipose tissues (AT). A comparative analysis of the properties and features of the derived cellular populations was performed. It was established that MMSCs isolated from BM and AT were capable of forming fatty, bone, and muscle tissue cells when cultured in induction media in vitro. Therefore, the production of farm animal muscle tissue analogs by myogenesis via three-dimensional MMSC cultivation on a porous matrix is a promising research direction for the needs of regenerative medicine, veterinary medicine, and cell and food biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix

HA:

hyaluronic acid

AT:

adipose tissue

BM:

bone marrow

MMSCs:

multipotent mesenchymal stromal cells

PBS:

phosphate buffered saline

AM:

Antharaea mylitta

BM:

Bombix mori

GelMA:

methacrylated gelatin hydrogel

GMP:

good medical practice

ISCT:

International Society for Cellular Therapy

SDF-1:

stromal cell-derived factor-1

PHA:

polyhydroxyalkanoates

SC-PL:

solvent casting particulate leaching

References

  1. Friedenstein, A.J., Chailakhjan, R.K., and Lalykina, S., The development of fibroblast colonies in monolayer cultures of guinea pig bone marrow and spleen cells, Cell Tissue Kinet., 1970, vol. 3, pp. 393–403.

    CAS  PubMed  Google Scholar 

  2. Campagnoli, C., Roberts, I.A., Kumar, S., Bennett, P.R., Bellantuono, I., and Fisk, N.M., Identification of mes enchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow, Blood, 2001, vol. 98, pp. 2396–2402.

    Article  CAS  PubMed  Google Scholar 

  3. Volkova, I.M., Viktorova, E.V., Savchenkova, I.P., and Gulyukin, M.I., Characterization of mesenchymal stem cells derived from bone marrow and adipose tissue of cattle, Sel’skokhoz. Biol., 2012, no. 2, pp. 32–38.

    Google Scholar 

  4. Dominici, M., le Blanc, K., and Mueller, I., Minimal criteria for defining multipotent mesenchymal stromal cells. the international society for cellular therapy posi tion statement, Cytotherapy, 2006, vol. 8, pp. 315–317.

    Article  CAS  PubMed  Google Scholar 

  5. Russell, K.C., Cell-surface expression of neuron-glial antigen 2 (ng2) and melanoma cell adhesion molecule (cd146) in heterogeneous cultures of marrow-derived mesenchymal stem cells / k.c. russell, h.a. tucker, b.a. bunnell, m. andreeff, w. schober, a.s. gaynor, k.l. strick ler, s. lin, m.r. lacey, k.c. o’connor, Tissue Eng, 2013. vol. 19.

  6. Le Blanc, K., Immunomodulatory effects of fetal and adult mesenchymal stem cells, Cytotherapy, 2003, vol. 5, no. 6, pp. 485–489.

    Article  PubMed  Google Scholar 

  7. Beyth, S., Borovsky, Z., and Mevorach, D., Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness, Blood, 2005, vol. 105, no. 5, pp. 2214–2219.

    Article  CAS  PubMed  Google Scholar 

  8. Dazzi, F., Dazzi, F., Ramasamy, R., Glennie, S., Jones, S.P., and Roberts, I., The role of mesenchymal stem cells in haemopoiesis, Rev. Blood, 2006, vol. 20, pp. 161–171.

    Article  CAS  Google Scholar 

  9. Siegel, G., Siegel, G., Shaffer, R., and Dazzi, F., The immunosuppressive properties of mesenchymal stem cells, Transplantology, 2009, vol. 87, no. 9, pp. 45–49.

    Article  Google Scholar 

  10. Lee, J., Cuddihy, M.J., and Kotov, N.A., Three-dimen sional cell culture matrices: state of the art, Tissue Eng. Part B Rev., 2008, vol. 14, no. 1, pp. 61–86.

    Article  CAS  PubMed  Google Scholar 

  11. Greiner, A.M., Richter, B., and Bastmeyer, M., Micro engineered 3D scaffolds for cell culture studies, Macro mol. Biosci., 2012, vol. 12, no. 10, pp. 1301–1314.

    Article  CAS  Google Scholar 

  12. Coutu, D.L., Yousefi, A.M., and Galipeau, J., Three dimensional porous scaffolds at the crossroads of tissue engineering and cell-based gene therapy, J. Cell Bio chem, 2009, vol. 108, no. 3, pp. 537–546.

    Article  CAS  Google Scholar 

  13. Schindler, M., Nur-E-Kamal, A., Ahmed, I., Kamal, J., Liu, H.Y., Amor, N., Ponery, A.S., Crockett, D.P., Grafe, T.H., Chung, H.Y., Weik, T., Jones, E., and Meiners, S., Living in three dimensions. 3D nanostruc tured environments for cell culture and regenerative medicine, Cell Biochem. Biophys., 2006, vol. 45, pp. 215–227.

    Article  CAS  PubMed  Google Scholar 

  14. Pallela, R., Pallela, R., Venkatesan, J., Janapala, V.R., and Kim, S.K., Biophysicochemical evaluation of chi tosanhydroxyapatite—marine sponge collagen com posite for bone tissue engineering, J. Biomed. Mater. Res., 2012. pp. 486–495.

    Google Scholar 

  15. Qu, J., Wang, D., Wang, H., Dong, Y., Zhang, F., Zuo, B., and Zhang, H., Electrospun silk fibroin nanofibers in different diameters support neurite out growth and promote astrocyte migration J. Biomed. Mater. Res. A, 2013, vol. 101, no. 9, pp. 2667–2678.

    Article  PubMed  Google Scholar 

  16. Mauney, J.R., Volloch, V., and Kaplan, D.L., Matrix mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesen chymal stem cells during ex vivo expansion, Biomateri als, 2005, vol. 26, no. 31, pp. 6167–6175.

    Article  CAS  Google Scholar 

  17. Baptista, P.M., Orlando, G., and Mirmalek-Sani, S.H., Whole organ decellularization—a tool for bioscaffold fabrication and organ bioengineering, in Conf. Proc. IEEE Eng. Med. Biol. Soc. Piscataway, NJ: IEEE Service Center, 2009. pp. 6526–6529.

    Google Scholar 

  18. Ho, Y.C., Mi, F.L., Sung, H.W., and Kuo, P.L., Hep arin-functionalized chitosan-alginate scaffolds for controlled release of growth factor, Int. J. Pharm., 2009, vol. 376, pp. 69–75.

    Article  CAS  PubMed  Google Scholar 

  19. Ifuku, S., Chitin and chitosan nanofibers: preparation and chemical modifications, Molecules (Basel, Swit zerland), 2014. vol. 19, no. 11, pp. 18367–18380.

    Article  CAS  Google Scholar 

  20. Kalinkevich, O.V., Kalinkevich, A.N., Sklyar, A.M., Pogorelov, M.V., Poddubnyi, I.N., Starikov, V.V., and Danil’chenko, S.N., 3D-based chitosan scaffolds for cell culturing and tissue engineering, Probl. Kriobiol., 2012, vol. 22, no. 2, pp. 182–185.

    CAS  Google Scholar 

  21. Bakunova, N.V., Barinov, S.M., Komlev, V.S., and Smirnov, V.V., Porous chitosan matrices reinforced with bioactive calcium compounds for bone restoration, Nauch. Vedomosti, Ser. Mat. Fiz., 2011. vol. 11 (106), pp. 173–178.

    Google Scholar 

  22. Sergeeva, N.S., Frank, G.A., Sviridova, I.K., Kisanova, V.A., Akhmedova, S.A., and Antokhin, A.I., The role of autogenic multipotent mesenchymal stro mal cells in tissue-engineering constructs based on nat ural corals and synthetic biomaterials in the replace ment of bone defects in animals, Klet. Transplantol. Tkan. Inzh., 2009. vol. IV(4), pp. 56–64.

    Google Scholar 

  23. Berry, J.F., Heckel, M.G., and Hoskins, V.W., Vacuum operated medicine dispenser, EUPatent no. 0705215, 1994.

    Google Scholar 

  24. Greco, R., Icono, J., and Ehrlich, H., Hyaluronic acid stimulates human fibroblast proliferation via collagen matrix, J. Cell Physiol., 1998, vol. 177, pp. 465–473.

    Article  CAS  PubMed  Google Scholar 

  25. Rakhmatullin, R.R. and Pozdnyakov, O.A., Bioplastic material, RFPatent no. 2367476, 2009.

    Google Scholar 

  26. Nusgens, B., Merrill, C., Lapiere, C., and Bell, E., Collagen biosynthesis by cells in a tissue equivalent matrix in vitro, Coll. Relat. Res., 1984, vol. 4, no. 5, pp. 351–363.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y., Liu, H.L., Guo, H.T., Wen, H.W., and Liu, J., Primary hepatocyte culture in collagen gel mixture and collagen sandwich, World J. Gastroenterol., 2004, vol. 10, no. 5, pp. 699–702.

    Article  PubMed  Google Scholar 

  28. Yoheno, K., Ohno, S., Tanimoto, K., Honda, K., Tanaka, N., Doi, T., Kawata, T., Tanaka, E., Kapila, S., and Tanne, K., Multidifferentiation potential of mes enchymal stem cells in 3-dimensional collagen gel cultures, J. Biomed. Mat. Res. A, 2005, vol. 75, no. 3, pp. 733–741.

    Article  Google Scholar 

  29. Urciuolo, A., Quarta, M., and Morbidoni, V., Collagen vi regulates satellite cell self-renewal and muscle regen eration, Nat. Commun., 2013, vol. 4, pp. 1964–1989.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Elliott, N.T. and Yuan, F., Review of three-dimensional in vitro tissue models for drug discovery and transport studies, J. Pharm. Sci., 2011, vol. 100, pp. 59–74.

    Article  CAS  PubMed  Google Scholar 

  31. Teplyashin, A.S., Korjikova, S.V., Sharifullina, S.Z., Chupikova, N.I., Rostovskaya, M.S., Vasyunina, N.Yu., and Savchenkova, I.P., Engineering cartilage-like tissue using adipose derived adult stem cells and collagen scaf folds, Tissue Eng., 2006, vol. 12, no. 4, pp. 1117–1121.

    Google Scholar 

  32. Sevast’yanov, V.I., Technologies of tissue engineering and regenerative medicine, Regenerat. Med. Klet. Tekh nol., 2014. vol. XVI, no. 4, pp. 93–108.

    Google Scholar 

  33. Nomura, Y. and Kitazume, N., Use of shark collagen for cell culture and zymography, Biosci. Biotechnol. Biochem., 2002, vol. 66, no. 12, pp. 2673–2676.

    Article  CAS  PubMed  Google Scholar 

  34. Bae, I., Osatomi, K., and Yoshida, A., Characteristics of a self-assembled fibrillar gel prepared from red stin gray collagen, Fish Sci., 2009, vol. 75, pp. 765–770.

    Article  CAS  Google Scholar 

  35. Sivakumar, P., Arichandran, R., Suguna, L., Mariap-pan, M., and Chandrakasan, G., The composition and characteristics of skin and muscle collagens from a freshwater catfish grown in biologically treated tannery effluent water, J. Fish. Biol., 2000, vol. 56, pp. 999–1012.

    CAS  Google Scholar 

  36. Kumar, K.V., Sai, K.P., and Babu, M., Application of frog (rana tigerina daudin) skin collagen as a novel sub strate in cell culture, J. Biomed. Mater. Res., 2002, vol. 61, no. 2, pp. 197–202.

    Article  CAS  PubMed  Google Scholar 

  37. Song, E., Yeon, K.S., Chun, T., Byun, H.J., and Lee, Y.M., Collagen scaffolds derived from a marine source and their biocompatibility, Biomaterials, 2006, vol. 27, no. 15, pp. 2951–2961.

    Article  CAS  PubMed  Google Scholar 

  38. Barinov, S.M., Komlev, V.S., Fadeeva, I.V., Fedotov, A.Yu., and Fomin, A.S., The porous compos ite material based on chitosan and gelatin to fill bone defects, RFPatent No. 2412711, 2011.

    Google Scholar 

  39. Orlova, A.A., Kotlyarova, M.S., Lavrenov, V.S., Volkova, S.V., and Arkhipova, A.Yu., Relationship between gelatin concentrations in silk fibroin-based composite scaffolds and adhesion and proliferation of mouse embryo fibroblasts, Byull. Eksp. Biol. Med., 2014, vol. 158, no. 1, pp. 88–91.

    Article  CAS  Google Scholar 

  40. Bogdan, V.G., Zafranskaya, M.M., and Gain, Yu.M., Selection of the extracellular matrix of multicompo nent biological graft with mesenchymal stem cells from adipose tissue for plastics of large abdominal wall defects, Voen. Med., 2014, vol. 1, pp. 88–93.

    Google Scholar 

  41. Rajangam, T. and An, S.S.A., Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications, Int. J. Nanomed., 2013, vol. 8, pp. 3641–3662.

    Google Scholar 

  42. Rajangam, T., Paik, H.J., and An, S.S.A., Development of fibrinogen microspheres as a biodegradable carrier for tissue engineering, BioChip J., 2011, vol. 5, no. 2, pp. 175–183.

    Article  CAS  Google Scholar 

  43. Vepari, C. and Kaplan, D.L., Silk as a biomaterial, Prog. Polym. Sci., 2007, vol. 32, nos. 8–9, pp. 991–1007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Rockwood, D.N., Preda, R.C., Yucel, T., Wang, X., Lovett, M.L., and Kaplan, D.L., Materials fabrication from Bombyx mori silk fibroin, Nat. Protoc., 2011, vol. 6, no. 10, pp. 1612–1631.

    Article  CAS  PubMed  Google Scholar 

  45. Bogush, V.G., Davydova, L.I., Moisenovich, M.M., Sidoruk, K.V., Arkhipova, A.Yu., Kozlov, D.G., Agapov, I.I., Kirpichnikov, M.P., and Debabov, V.G., Characteristics of biodegradable cellular microand nanocarriers based on recombinant spidroin, Biotekh nologiya, 2014, no. 1, pp. 52–61.

    Google Scholar 

  46. Huang, G., Wang, L., Wang, S., Han, Y., Wu, J., Zhang, Q., Xu, F., and Lu, T.J., Engineering three dimensional cell mechanical microenvironment with hydrogels, Biofabrication, 2012, vol. 4, pp. 1–12.

    Article  Google Scholar 

  47. Lozinsky, V.I., A new family of macroporous and super macroporous materials for biotechnological purposes: polymer cryogels, Izv. Akad. Nauk, Ser. Khim., 2008, no. 5, pp. 1–18.

    Google Scholar 

  48. Petrenko, Yu.A., Ivanov, R.V., Petrenko, A.Yu., and Lozinsky, V.I., Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells, J. Mater. Sci: Mater. Med., 2011, vol. 22, pp. 1529–1540.

    CAS  Google Scholar 

  49. Wen, C., Yamada, Y., and Hodgson, P., Fabrication of novel metal alloy foams for biomedical applications, Mater. Forum, 2005, vol. 29, pp. 274–278.

    CAS  Google Scholar 

  50. Buehler, W.J. and Wiley, R.C., Nickel-based alloys, USPatent no. 3174851, 1965.

    Google Scholar 

  51. Zuboproteznaya tekhnika: uchebnik dlya meditsinskikh uchilishch i kolledzhei (Prosthetic Technique: a Textbook for Medical Colleges), Rasulov, M.M., Ibragimov, T.I., and Lebedenko, I.Yu., Eds., Moscow: GEOTARMediya, 2013.

  52. Nemir, S. and West, J.L., Synthetic materials in the study of cell response to substrate rigidity, Ann Biomed Eng., 2010, vol. 38, no. 1, pp. 2–20.

    Article  PubMed  Google Scholar 

  53. Cheung, H.-Y., Lau, K.-T., Lu, T.-P., and Hui, D., A critical review on polymer-based bio-engineered mate rials for scaffold development, Composites, 2007, vol. 38, pp. 291–300.

    Article  Google Scholar 

  54. Teplyashin, A.S., Korjikova, S.V., Chupikova, N.I., Sharifullina, S.Z., Rostovskaya, M.S., Vasyunina, N.Yu., and Savchenkova, I.P., In vitro cartilage formation by bone marrow-derived mesenchymal stem cells in OPLA scaffolds, Tissue Eng., 2006, vol. 12, no. 4, pp. 1090–1095.

    Google Scholar 

  55. Zdrahala, R.J. and Zdrahala, I.J., Biomedical applica tions of polyurethanes: a review of past promises, present realities, and a vibrant future, J. Biomater. Appl., 1999, vol. 14, pp. 67–90.

    CAS  PubMed  Google Scholar 

  56. Shishatskaya, E.I., Cellular matrices made of resorb able polyhydroxyalkanoates, Klet. Transplant. Tkan. Inzh., 2007. vol. II, no. 2, pp. 68–75.

    Google Scholar 

  57. Microcarrier Cell Culture. Principles and Methods, GE: Healthcare, 2005.

  58. Guo, Z., Liu, X.M., Ma, L., Li, J., Zhang, H., Gao, Y.P., and Yuan, Y., Effects of particle morphology, pore size and surface coating of mesoporous silica on naproxen dissolution rate enhancement, Colloids Surf. B: Biointer faces, 2013, vol. 101, pp. 228–235.

    Article  CAS  Google Scholar 

  59. Engler, A.J., Griffin, A.M., Sen, S., Bonnemann, C.G., Sweeney, H.L., and Discher, D.E., Myotubes differenti ate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments, J. Cell Biol., 2004, vol. 166, no. 6, pp. 877–887.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Rogov, I.A., Lisitsyn, A.B., Taranova, K.G., and Volkova, I.M., In vitro meat as a promising source of com plete protein, Vse o Myase, 2013, no. 4, pp. 22–25.

    Google Scholar 

  61. Rogov, I.A., Volkova, I.M., Kuleshov, K.V., and Savchenkova, I.P., Differentiation of multipotent mes enchymal stem cells derived from bone marrow and adipose tissue of cattle into muscle cells in vitro, Sel’skokhoz. Biol., 2012, no. 6, pp. 66–72.

    Google Scholar 

  62. Stern-Straeter, J., Riedel, F., Bran, G., Hörmann, K., and Goessler, U.R., Advances in skeletal muscle tissue engineering, In Vivo, 2007, vol. 21, pp. 435–444.

    CAS  PubMed  Google Scholar 

  63. Dennis, R.G., Kosnik, P.E., Gilbert, M.E., and Faulkner, J.A., Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines, Am. J. Physiol. Cell Physiol., 2001, vol. 2, pp. 288–295.

    Google Scholar 

  64. Kosnik, P.E., Faulkner, J.A., and Dennis, R.G., Func tional development of engineered skeletal muscle from adult and neonatal rats, Tissue Eng., 2001, vol. 5, pp. 573–584.

    Article  Google Scholar 

  65. Kamelger, F.S., Marksteiner, R., Margreiter, E., Klima, G., Wechselberger, G., Hering, S., and Piza, H., A comparative study of three different bioma terials in the engineering of skeletal muscle using a rat animal model, Biomaterials, 2004, vol. 9, pp. 1649–1655.

    Article  Google Scholar 

  66. Saxena, A.K., Marler, J., Benvenuto, M., Willital, G.H., and Vacanti, J.P., Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies, Tissue Eng., 1999, vol. 5, no. 6, pp. 525–532.

    Article  CAS  PubMed  Google Scholar 

  67. Teodori, L., Costa, A., Marzio, R., Perniconi, B., Coletti, D., Adamo, S., Gupta, B., and Tarnok, A., Native extracellular matrix: a new scaffolding plat form for repair of damaged muscle, Front Physiol., 2014, vol. 5, pp. 218–227.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Huang, Y.-C., Dennis, G.R., Larkin, L., and Baar, K., Rapid formation of functional muscle in vitro using fibringels, J. Appl. Physiol., 2005, vol. 98, no. 2, pp. 706–713.

    Article  PubMed  Google Scholar 

  69. Patra, C., Talukdar, S., Novoyatleva, T., Velagala, S.R., Muhlfeld, C., Kundu, B., Kundu, S.C., and Engel, F.B., Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering, Biomaterials, 2012, vol. 33, no. 9, pp. 2673–2680.

    Article  CAS  PubMed  Google Scholar 

  70. Cheema, U., Yang, S.Y., Mudera, V., Goldspink, G.G., and Brown, R.A., 3-D in vitro model of early skeletal muscle development, Cell Motil. Cytoskeleton, 2003, vol. 54, no. 3, pp. 226–236.

    Article  CAS  PubMed  Google Scholar 

  71. Hosseini, V., Ahadian, S., Ostrovidov, S., Camci Unal, G., Chen, S., Kaji, H., Ramalingam, M., and Khademhosseini, A., Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gela tin substrate, Tissue Eng., 2012, vol. 18, nos. 23–24, pp. 2453–2465.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Volkova.

Additional information

Original Russian Text © I.M. Volkova, D.G. Korovina, 2015, published in Biotekhnologiya, 2015, No. 2, pp. 8–26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, I.M., Korovina, D.G. Three-dimensional matrixes of natural and synthetic origin for cell biotechnology. Appl Biochem Microbiol 51, 841–856 (2015). https://doi.org/10.1134/S0003683815090082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815090082

Keywords

Navigation