Skip to main content
Log in

Production of taunit–antibiotic nanocomplexes and study of their antifungal activity relative to Aspergillus niger and Candida albicans

  • Technology of Biopreparations
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Nanocomplexes based on a modern Taunit nanosorbent with polyene antibiotics (amphotericin B, nystatin A1, and natamycin) widely used in medical practice were obtained for the first time; their antifungal activity was studied. It was demonstrated that the Taunit–nystatin A1 complex is active as compared to Aspergillus niger, while the Taunit–natamycin complex is active as compared to Aspergillus niger and Candida albicans. The Taunit–amphotericin B nanocomplex is not active relative to the studied test organisms (A. niger and C. albicans). Possible mechanisms of the action of the obtained complexes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMSO:

dimethyl sulfoxide

CFU:

colony-forming unit

MCNT:

multilayer carbon nanotubes

MRSA:

meticillinresistant Staphylococcus aureus

References

  1. Richards, M.I., Edwards, J.R., Culver, D.H., and Gaynes, R.P., Nosocomial infections in medical intensive care units in the United States. National nosocomial infections surveillance system, Crit. Care Med., 1999, vol. 27, pp. 887–892.

    Article  CAS  PubMed  Google Scholar 

  2. McNeil, M.M., Hash, S.L., Hajjeh, R.A., Phelan, M.A., Conn, L.A., Pliraytis, B.D., and Wamock, D.W., Trends in mortality due to invasive mycotic diseases in the united states, 1980-1997, Clin. Infect. Diseases, 2001, vol. 33, no. 5, pp. 641–647.

    Article  CAS  Google Scholar 

  3. Wisplinghoff, H., Bischoff, T., Tallent, S.M., Seifert, H., Wenzel, R.P., and Edmond, M.B., Nosocomial bloodstream infections in us hospitals: analysis of 24179 cases from a prospective nationwide surveillance study, Clin. Infect. Diseases, 2004, vol. 39, no. 3, pp. 309–317.

    Article  Google Scholar 

  4. Hospenthal, D.R., Mandell, G.L., Bennett, J.E., and Dolin, R., “Uncommon fungi”, in Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 6th ed., Philadelphia, USA, Churchill: Livingstone, 2005, vol. 2, pp. 3068–3079.

    Google Scholar 

  5. van Thiel, D.H., George, M., and Moore, C.M., Fungal infections: their diagnosis and treatment in transplant recipients, Int. J. Hepatol., 2012, vol. 12, pp. 1–19.

    Article  Google Scholar 

  6. Ae Jung Huh and Young Jik Kwon, Nanoantibiotics: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistantera, J. Controlled Release, 2011, vol. 156, pp. 128–145.

    Article  Google Scholar 

  7. Mishchenko, S.V. and Tkachev, A.G., Uglerodnye nanomaterialy. Proizvodstvo, svoistva, primenenie (Carbon Nanomaterials: Production, Properties, and Applications), Moscow: Mashinostroenie, 2008.

    Google Scholar 

  8. Timofeeva, A.V., Galatenko, O.A., Il’ina, M.V., Terekhova, L.P., and Katrukha, G.S., Obtaining and research of antimicrobial activity of “antibiotic-nanotube"-type complexes ("Taunit” antibiotic), in Proc. 9th Int. Sci. Pract. Conf. “Future Investigations, vol. 22: Medicine, Sofia: Byal GRAD-BG LTD, 2013. p. 112.

    Google Scholar 

  9. Milton, B., Sloane. a new antifungal antibiotic, mycostatin (nystatin) for the treatment of moniliasis: a preliminary report, J. Investigat. Dermatol., 1955, vol. 24, pp. 569–571.

    Article  Google Scholar 

  10. Stark, J. and Tan, H.S., Natamycin, New York: Plenum Publishers, 2003.

    Google Scholar 

  11. Brajtburg, J., Powderly, W.G., Kobayashi, G.S., and Medoff, G., Amphotericin B: current understanding of mechanisms of action, J. Antimicrob. Agents. Chemother., 1990, vol. 34, no. 2, pp. 183–188.

    Article  CAS  Google Scholar 

  12. Eremenko, A.S., and Vlasov, A.I., Study of carbon fibers and carbon nanotubes, in Dvenadtsataya nauchnaya konf. “Shag v budushchee” (12th Sci. Conf. “A Step into the Future”), Moscow, 2009.

    Google Scholar 

  13. Haese, A. and Keller, U., Genetics of actinomycin c production in Streptomyces chrysomallus, J. Bacteriol., 1988, vol. 170, no. 3, pp. 1360–1368.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Odds, F.S., Sordarin antifungal agents, Expert Opin. Ther., 2001, vol. 11, pp. 283–294.

    Article  Google Scholar 

  15. Baginski, M. Czub, J., Amphotericin B and its new derivatives-mode of action, Curr. Drug Metab., 2009, vol. 10, pp. 459–469.

    Article  CAS  PubMed  Google Scholar 

  16. Van de Ven, H., Paulussen, C., Feijens, P.B., Mate heeussen, A., Rombaut, P., Kayaert, P., Van den Mooter, G., Cos, P., Maes, L., and Ludwig, A., PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and alternatives to fungisone and ambisome, J. Controlled Release, 2012, vol. 161, pp. 795–803.

    Article  Google Scholar 

  17. Prajapati, V.K., Awasthi, K., Gautam, S., Yadav, T.P., Rai, M., Srivastava, O.N., and Sundar, S., Targeted killing of Leishmania donovani in vivo with amphotericin B attached to functionalized carbon nanotubes, J. Antimicrob. Chemother., 2011, vol. 66, pp. 874–879.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hamilton-Miller, J.M.T., Chemistry and biology of the polyene macrolide antibiotics, Bacteriol. Rev., 1973, vol. 37, no. 2, pp. 166–196.

    CAS  Google Scholar 

  19. Eletskii, A.V., Carbon nanotubes, Usp. Fiz. Nauk, 1997, vol. 167, no. 9, pp. 945–972.

    Article  CAS  Google Scholar 

  20. Heve, M., Duboury, J.C., Borowski, E., Cybulska, B., and Gary-Bobo, C.M., The role of the carboxyl and amino groups of polyene macrolides in their interaction with sterols and their selective toxicity. a 31p-nmr study, Biochim. Biophys. Acta, 1989, vol. 98, pp. 261–272.

    Google Scholar 

  21. Tanford, C., The Hydrophobic Effect: Formation Of Micelles And Biological Membranes, New York: John Wiley and Sons Inc., 1980.

    Google Scholar 

  22. Eletskii, A.V., Sorption properties of carbon nanostructures, Usp. Fiz. Nauk, 2004, vol. 174, no. 11, pp. 1191–1231.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Timofeeva.

Additional information

Original Russian Text © A.V. Timofeeva, M.V. Ilyina, E.A. Stepashkina, L.A. Baratova, G.S. Katrukha, 2014, published in Biotekhnologiya, 2014, No. 3, pp. 18–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeeva, A.V., Ilyina, M.V., Stepashkina, E.A. et al. Production of taunit–antibiotic nanocomplexes and study of their antifungal activity relative to Aspergillus niger and Candida albicans . Appl Biochem Microbiol 51, 887–892 (2015). https://doi.org/10.1134/S0003683815090070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815090070

Keywords

Navigation