Skip to main content
Log in

Biofilm formation by groundwater microbial complexes in vitro

  • Ecology
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The influence of natural organic substances and iron hydroxides on in vitro biofilm formation by groundwater microorganisms was assessed. The combination of these compounds stimulates the formation of large mucosal biofilms that absorb insoluble iron hydroxide particles. Organic substances are important regulators of biofilm formation. Therefore, the location of biofilms in pore space increases the risks of biocolmatage of this space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BF:

biofilm

YE:

yeast extract

OD:

optical density

FPA:

fish-peptone agar

T-20:

Caulobacter sp.T-20 strain

References

  1. Nikolaev, Yu.A. and Plakunov, V.K., Biofilm—“City of microbes” or an analogue of multicellular organisms?, Microbiology (Moscow), 2007, vol. 76, no. 2, pp. 149–163.

    Article  Google Scholar 

  2. Parfenova, V.V., Mal’nik, V.V., Boiko, S.M., Sheveleva, N.G., Logacheva, L.F., Evstigneeva, T.D., Suturin, A.N., and Timoshkin, O.A., Communities of hydrobionts developing at the water–rock interface in Lake Baikal, Russ. J. Ecol., 2008, vol. 39, no. 3, pp. 198–204.

    Article  Google Scholar 

  3. Flemming, H.-C., Microbial Biofouling: Unsolved Problems, Insufficient Approaches, and Possible Solutions, Berlin, Heidelberg: Springer-Verlag, 2011.

    Google Scholar 

  4. Flemming, H.-C., Why Microorganisms Live in Biofilms and the Problem of Biofouling, Berlin, Heidelberg: Springer-Verlag, 2008.

    Google Scholar 

  5. Kvartenko, A.N. and Govorova, Zh.M., Upgraded technologies for complex conditioning of ground water, Vestnik MGSU, 2013, no. 5, pp. 118–123.

    Google Scholar 

  6. Karmalov, A.I. and Filimonova, S.V., Analysis of the causes of clogging and corrosion of equipment of water supply wells under increased anthropogenic pressure, Vodosnabzhen. San. Tekhnika, 2011. no. 9 (1), pp. 16–20.

    Google Scholar 

  7. Kulakov, V.V. and Kondrat’eva, L.M., Biogeochemical aspects of purification of groundwater of the Priamurye, Tikhookean. Geol., 2008. no. 17 (1), pp. 109–118.

    Google Scholar 

  8. Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, J.W., and Lappin-Scott, H.M., Microbial biofilms, Annu. Rev. Microbiol., 1995, no. 49, pp. 711–745.

    Article  CAS  PubMed  Google Scholar 

  9. Costerton, J.W., The Biofilm Primer, Berlin, New York: Springer, 2007.

    Book  Google Scholar 

  10. Mencha, M.N., Iron bacteria in the systems of drinking water supply from underground sources, Vodosnabzhen. San. Tekhn., 2006, no. 7, pp. 25–32.

    Google Scholar 

  11. Schlegel, H.G., General Microbiology, 6th ed., Cambridge: Cambridge Univ. Press, 1986.

    Google Scholar 

  12. Zavarzin, G.A., Lektsii po prirodovedcheskoi mikrobiologii (Lectures on Natural Sciences Microbiology), Moscow: Nauka, 2003.

    Google Scholar 

  13. Bukreeva, V.Yu., Grabovich, M.Yu., Eprintsev, A.T., and Dubinina, G.A., Sorption of colloidal compounds of iron and manganese oxides with the aid of iron bacteria in the sand loadings of treatment facilities of water-lifting stations, Sorbtsion. Khromatograf. Prots., 2009, vol. 9, no. 4, pp. 506–514.

    Google Scholar 

  14. Potekhina, Zh.S., Metabolizm Fe(III) vosstanavlivayushchikh bakterii (Metabolism of Fe(III) Reducing Bacteria), Tolyatti: IEVB RAN, 2006.

    Google Scholar 

  15. Nealson, K.H. and Myers, C.R., Microbial reduction of manganese and iron: new approaches to carbon cycling, Appl. Environ. Microbiol., 1992, vol. 59, pp. 439–443.

    Google Scholar 

  16. Schroder, I., Johnson, E., and de Vries, S., Microbial ferric iron reductases, FEMS Microbiol. Rev., 2003, vol. 27, nos. 2–3, pp. 427–447.

    Article  CAS  PubMed  Google Scholar 

  17. Lovley, D.R., Dissimilatory Fe(III) and Mn(IV) reduction, Microbiol. Rev., 1991, vol. 55, pp. 259–287.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Lovley, D.R., Holmes, D.E., and Nevin, K.P., Dissimilatory Fe(III) and Mn(IV) reduction, Adv. Microb. Physiol., 2004, vol. 49, pp. 219–286.

    Article  CAS  PubMed  Google Scholar 

  19. Shi, L., Squier, T.C., Zachara, J.M., and Fredrickson, J.K., Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multichaem c-type cytochromes, Mol. Microbiol., 2007, vol. 65, no. 1, pp. 12–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Loughlin, E.J., Gorski, C.A., Scherer, M.M., Boyanov, M.I., and Kemner, K.M., Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidorocite (gamma-FeOOH) and the formation of secondary mineralization products, Environ. Sci. Technol., 2010, vol. 44, no. 12, pp. 4570–4576.

    Article  Google Scholar 

  21. Nevin, K.P. and Lovley, D.R., Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans, Appl. Environ. Microbiol., 2002, vol. 68, no. 5, pp. 2294–2299.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lovley, D.R., Fraga, J.L., Blunt-Harris, E.L., Hayes, L.A., Phillips, E.J., and Coates, J.D., Humic substances as a mediator for microbially catalyzed metal reduction, Acta Hydrochim. Hydrobiol., 1998, vol. 26, pp. 152–157.

    Article  CAS  Google Scholar 

  23. Newman, D.K., Newman, D.K., and Kolter, R., A role for excreted quinones in extracellular electron transfer, Nature, 2000, vol. 405, pp. 93–97.

    Google Scholar 

  24. Cullimore, D.R., Microbiology of Well Biofouling, Boca Raton, FL: CRS Press, 1999.

    Google Scholar 

  25. Walter, D.A., Geochemistry and Microbiology of IronRelated Well-Screen Encrustation and Aquifer Biofouling in Suffolk Conty. Water-Resources Investigations Report 97-4032, New York: Coram, 1997.

    Google Scholar 

  26. Chapelle, F.H. and Lovley, D.R., Competitive exclusion of sulfate reduction by Fe(III) reducing bacteria: a mechanism for producing discrete zones of high-iron ground water, Ground Water, 1992, vol. 30, pp. 29–36.

    Article  CAS  Google Scholar 

  27. Strelkova, E.A., Pozdnyakova, N.V., Zhurina, M.V., Plakunov, V.K., and Belyaev, S.S., Role of the extracellular polymer matrix in resistance of bacterial biofilms to extreme environmental factors, Microbiology (Moscow), 2013, vol. 82, no. 2, pp. 119–125.

    Article  CAS  Google Scholar 

  28. Mazzon, R.R., Mazzon, R.R., Lang, E.A., Braz, V.S., and Marques, M.V., Characterization of Caulobacter crescentus response to low temperature and identification of genes involved in freezing resistance, FEM Microbiol. Lett., 2008, vol. 288, no. 2, pp. 178–185.

    Article  CAS  Google Scholar 

  29. Moldoveanu, A.M., Bacterial biofilms utilization of low concentration of organic matter on hydrophile surfaces submerged in seawater, Sci. Annals of Al. I. Cuza University, 2011, vol. 12, no. 4, pp. 165–175.

    CAS  Google Scholar 

  30. Sutherland, I.W., Biotechnology of Microbial Exopolysaccharides, Cambridge: University Press, 1990.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kondratyeva.

Additional information

Original Russian Text © L.M. Kondratyeva, Z.N. Litvinenko, 2014, published in Biotekhnologiya, 2014, No. 3, pp. 73–82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyeva, L.M., Litvinenko, Z.N. Biofilm formation by groundwater microbial complexes in vitro. Appl Biochem Microbiol 51, 893–902 (2015). https://doi.org/10.1134/S0003683815090057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815090057

Keywords

Navigation