Skip to main content
Log in

Potential of Penicillium cyclopium westling for removing of anionic surfactants and biotechnology

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The ability of native wild isolate Penicillium cyclopium Westling to degrade commercial detergent Merix (Henkel, Serbia) as well as the influence of detergent on activities of some fungal enzymes was in the focus of this study. The fungus was isolated from the riverbed of Western Morava (Čačak, Serbia), at a place where municipal wastewater discharged into the river. The fungus was grown in Czapek-Dox liquid nutrient medium without and with addition of 0.3% detergent. The physico-chemical and biochemical changes of pH, redox potential, total biomass dry weight, activities of alkaline (AlkI) and acid (AcI) invertases and alkaline protease were evaluated from 3-rd to 16-th day of fungal growth. Also, detergent disappearance in terms of methylene blue active substances in the medium was measured. The detergent caused an inhibitory effect on fungal growth and biomass dry weight (about 33.4%). In spite of that, the fungus degraded about 47.0% of anionic surfactant of detergent after 16 days of incubation. The detergent stimulated AcI activity of P. cyclopium but inhibited AlkI and protease activities. Alkaline protease of the fungus retained high percentage of activity (87.7%) in presence of tested detergent. The obtained results indicate the potential of fungus in removing of surfactants and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harikumar, P., Jesitha, K., and Sreechithra, M., J. Environ. Prot., 2013, vol. 4, no. 5, pp. 418–425.

    Article  Google Scholar 

  2. Cowan-Ellsberry, C., Belanger, S., Dorn, P., Dyer, S., McAvoy, D., Sanderson, H., et al., K., Crit. Rev. Environ. Sci. Technol., 2014, vol. 44, no. 17, pp. 1893–1993.

    Article  CAS  Google Scholar 

  3. Linear Alkylate Sulfonates, Modler, R.F., Blagoev, M., and Inoguchi, Y., Eds., CA: Menlo Park, 2009.

  4. Pettersson, A., Adamsson, M. and Dave, G., Chemosphere, 2000, vol. 41, no. 10, pp. 1611–1620.

    Article  CAS  PubMed  Google Scholar 

  5. European Commission. European Parliament Regulation (EC) No 648/2004 of the European Parliament and of Council of 31 March 2004 on Detergents, Official Journal of the European Union L 104, 2004, pp. 1–35.

    Google Scholar 

  6. Nikhil, T., Deepa, V., Rohan, G., and Satish, B., Int. Res. J. Environ. Sci., 2013, vol. 2, no. 2, pp. 48–52.

    Google Scholar 

  7. Sing, H., Mycoremediation, New Jersey: John Wiley and Sons, Inc., 2006.

    Book  Google Scholar 

  8. Garon, D., Sage, L., and Seigle-Murandi, F., Biodegradation, 2004, vol. 15, no. 1, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  9. Boonchan, S., Britz, M.L., and G.A. Stanley, Appl. Environ. Microbiol., 2000, vol. 66, no. 3, pp. 1007–1019.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Saraswathy, A. and Hallberg, R., FEMS Microbiol. Lett., 2002, vol. 210, no. 2, pp. 227–232.

    Article  CAS  PubMed  Google Scholar 

  11. Saraswathy, A. and Hallberg, R., Microbiol. Res., 2005, vol. 160, no. 4, pp. 375–383.

    Article  CAS  PubMed  Google Scholar 

  12. Bioremediation of Contaminated Soil, Wise, D.L., Debra, J.T., Cichon, E.J., Inyang, H.I., and Stottmeister, U. Eds., New York: Marcel Dekker, 2000.

  13. Meléndez-Estrada, J., Amezcua-Allieri, M.A., Alvarez, P.J.J., and Rodríguez-Vázquez, R., Environ. Technol., 2006, vol. 27, no. 10, pp. 1073–1080.

    Article  PubMed  Google Scholar 

  14. Sack, U. and Gunther, T., J. Basic Microbiol., 1993, vol. 33, no. 4, pp. 269–277.

    Article  CAS  PubMed  Google Scholar 

  15. Jakovljević, V., Milićević, J., and Stojanović, J., Biotechnol. Biotec. Eq., 2014, vol. 28, no. 1, pp. 43–51.

    Article  Google Scholar 

  16. Leitão, A.L., Int. J. Environ. Res. Public Health, 2009, vol. 6, no. 4, pp. 1393–1417.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Tan, H., Deng, Z., and Cao, L., Lett. Appl. Microbiol., 2009, vol. 49, no. 2, pp. 248–253.

    Article  CAS  PubMed  Google Scholar 

  18. Sonjak, S., Frisvad, J.C., and Gunde-Cimerman, N., FEMS Microbiol. Ecol., 2005, vol. 53, no. 1, pp. 51–60.

    Article  CAS  PubMed  Google Scholar 

  19. Chatterjee, S., J. Adv. Pharm. Technol. Res., 2015, vol. 6, no. 1, pp. 2–6.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Esawy, M.A., Kansoh, A.L., Kheiralla, Z.H., Ahmed, H.A.E., Kahil, T.A.K. and El-Hameed, E.K.A., Int. J. Biotechnol. Wellness Ind., 2014, vol. 3, no. 2, pp. 36–45.

    Article  Google Scholar 

  21. Standard Methods for the Examination of Water and Wastewater, Eaton, A.D., Clesceri, L.S., Rice, E.W. and Greenberg, A.E., Eds., Washington: American Water Works Association; Water Pollution Control Federation, 2005.

  22. Somogyi, M., J. Biol. Chem., 1952, vol. 195, pp. 19–23.

    CAS  Google Scholar 

  23. Anson, M.L., J. Gen. Physiol., 1938, vol. 20, pp. 79–89.

    Article  Google Scholar 

  24. Nascimento, A.W.C. and Martins, L.M.L., Braz. J. Microbiol., 2006, vol. 37, no. 3, pp. 307–311.

    Article  Google Scholar 

  25. Stojanović, J., Milićević, J., Gajović, O., Jakovljević, V., Matović, I., Mijušković, Z., and Nedeljković, T., Arch. Biol. Sci., 2011, vol. 63, no. 4, pp. 1001–1006.

    Article  Google Scholar 

  26. Jakovljević, V.D., Stojanović, J.D., and Vrvić, M.M., Chem. Ind. Chem. Eng. Q., 2015, vol. 21, no. 1, pp. 131–139.

    Article  Google Scholar 

  27. Jakovljević, V.D., Milićević, J.M., Stojanović, J.D., and Vrvić, M.M., Chem. Ind. Chem. Eng. Q., 2014, vol. 20, no. 4, pp. 587–595.

    Article  Google Scholar 

  28. Velan, M., Sheeba Varma, S., Gnanambigai, P. and Lakshmi, M.B., IJCEE, 2012, vol. 3, no.5, pp. 318–323.

    CAS  Google Scholar 

  29. Pessoni, R., Braga, A.B.M.R., and Figueiredo-Ribeiro, R.C.L., Mycologia, 2007, vol. 99, vol. 4, pp. 493–503.

    Article  CAS  PubMed  Google Scholar 

  30. Santana de Almeida, A.C., de Araujo, L.C., Costa, A.M., Morales de Abreu, C.A., Gomes de Andrade Lima, M.A., and Perez Fernandez Palha, M.L.A., Electron. J. Biotechn., 2005, vol. 8, no. 1, pp. 54–62.

    CAS  Google Scholar 

  31. Shankar, T., Thangamathi, P., Rama, R., and Sivakumar, T., Afr. J. Microbiol. Res., 2014, vol. 8, no. 13, pp. 1385–1393.

    Article  CAS  Google Scholar 

  32. Nehra, K.S., Dhillon, S., Chaudhary, K., and Singh, R., Ind. J. Microbiol., 2002, vol. 42, no. 1, pp. 43–47.

    Google Scholar 

  33. Kumar, A., Sachdev, A., Balasubramanyam, S.D., Saxena, A., and Lata, K., Ind. J. Microbiol., 2002, vol. 42, no. 3, pp. 233–236.

    Google Scholar 

  34. Subba Rao, Ch., Sathish, T., Ravichandra, P., and Prakasham, R.S., Process Biochem., 2009, vol. 44, no. 3, pp. 262–268.

    Article  CAS  Google Scholar 

  35. Rani, M.R., Prasad, N.N., and Sambasivarao, K.R.S., Asian J. Exp. Biol. Sci., 2012, vol. 3, no. 3, pp. 565–575.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Jakovljević.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakovljević, V.D., Vrvić, M.M. Potential of Penicillium cyclopium westling for removing of anionic surfactants and biotechnology. Appl Biochem Microbiol 51, 704–711 (2015). https://doi.org/10.1134/S000368381506006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368381506006X

Keywords

Navigation