Skip to main content
Log in

New virulent bacteriophages active against multiresistant Pseudomonas aeruginosa strains

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The sensitivity of 512 newly isolated Pseudomonas aeruginosa clinical strains to six classes of antimicrobial preparations has been studied. Antibiotic-resistant strains were selected and genotyped. Three new virulent bacteriophages of the families Myoviridae and Podoviridae were isolated against these strains. The parameters of the intracellular phage development cycle were established, and the influence of inactivating factors (temperature, pH, and UV exposure) on phage viability was studied. The molecular weight of the phage genome was determined. Phage DNA restriction analysis and structural protein composition analysis by SDS polyacrylamide gel electrophoresis were carried out. The plating efficacy of phages on 28 genetically distant antibiotic-resistant P. aeruginosa strains was studied. It was established that 26 of them were lysed by phages with a high efficacy. The range of antibacterial action of the studied phages and their mixtures on 427 multidrug-resistant clinical isolates was assessed. It is shown that including these phages in one multicomponent preparation enhanced their lytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jarvis, W.R. and Martone, W.J., J. Antimicrob. Chemother., 1992, vol. 29 (suppl. A), pp. 19–24.

    Article  PubMed  Google Scholar 

  2. Empey, K.M., Rapp, R.P., and Evans, M.E., Pharmacotherapy, 2002, vol. 22, no. 1, pp. 81–87.

    Article  CAS  PubMed  Google Scholar 

  3. Sievert, D.M., Ricks, P., Edwards, J.R., Schneider, A., Patel, J., Srinivasan, A., Kallen, A., Limbago, B., and Fridkin, S., NHSN team and participating NHSN facilities, Infect. Control. Hosp. Epidemiol., 2013, vol. 34, pp. 1–14.

    Article  PubMed  Google Scholar 

  4. Wisplinghoff, H., Bischoff, T., Tallent, S.M., Seifart, H., Wenzel, R.P., and Edmond, M.B., Clin. Infect. Dis., 2004, vol. 39, pp. 309–317.

    Article  PubMed  Google Scholar 

  5. Smolyanskaya, A.Z., Dmitrieva, N.V., and Petukhova, I.N., Infekts. Antimikrob. Terap., 2002, no. 4, pp. 113–116.

    Google Scholar 

  6. Kalwij, H., Hall, A.J., Cottel, J., Brockhurst, M.A., and Winstanley, C., BMC Microbiol., 2012, vol. 12, p. 216.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Philip, D.L., Daniel, J.W., and Nancy, D.H., Clin. Microbiol. Rev., 2009, vol. 22, no. 4, pp. 582–610.

    Article  Google Scholar 

  8. Barrow, P.A. and Soothil, J.S., Trends Genet., 1997, vol. 5, no. 7, pp. 268–271.

    CAS  Google Scholar 

  9. Biswas, B., Adhya, S., Washart, P., Paul, B., Trostel, A.N., Powell, B., Carlton, R., and Merril, C.R., Infect. Immun., 2002, vol. 70, no. 1, pp. 204–210.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Akimkin, V.G., Darbeeva, O.S., and Kolkov, V.F., Klin. Praktika, 2010, no. 4, pp. 48–54.

    Google Scholar 

  11. Mathur, M.D., Vidhani, S., and Mehndiratta, P.L., J. Assoc. Physicians India, 2003, vol. 51, pp. 593–599.

    CAS  PubMed  Google Scholar 

  12. Matsuzaki, S., Rashel, M., Uchiyama, J., Sakurai, S., Ujihara, T., Kuroda, M., Ikeuchi, M., Tani, T., Fujieda, M., Wakiguchi, H., and Imai, S., J. Infect Chemother., 2005, vol. 11, no. 5, pp. 211–220.

    Article  PubMed  Google Scholar 

  13. Soothill, J.S., J. Med. Microbiol., 1992, vol. 37, no. 4, pp. 258–261.

    Article  CAS  PubMed  Google Scholar 

  14. Krylov, V.N., Genetika, 2001, vol. 37, no. 7, pp. 869–887.

    CAS  PubMed  Google Scholar 

  15. Morello, E., Saussereau, E., Maura, D., Huerre, M., Touqui, L., and Debarbieux, L., PLoS ONE, 2011, vol. 6, no. 2, p. e16963.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kutateladze, M. and Adamia, R., Med. Mal. Infect., 2008, vol. 38, pp. 426–430.

    Article  CAS  PubMed  Google Scholar 

  17. Merril, C.R., Scholl, D., and Adhya, S.L., Nat. Rev. Drug. Discov., 2003, vol. 2, pp. 489–497.

    Article  CAS  PubMed  Google Scholar 

  18. Gorski, A., Miedzybrodzki, R., Borysowski, J., Weber-Dabrowska, B., Lobocka, M., Fortuna, W., Lekhiewicz, S., Zimecki, M., and Filby, G., Curr. Opin. Investig. Drugs, 2009, vol. 10, pp. 766–774.

    CAS  PubMed  Google Scholar 

  19. Smith, H.W. and Huggins, M.B., J. Gen. Microbiol., 1983, vol. 129, pp. 2659–2675.

    CAS  PubMed  Google Scholar 

  20. Smith, H.W. and Huggins, M.B., J. Gen. Microbiol., 1982, vol. 128, pp. 307–318.

    CAS  PubMed  Google Scholar 

  21. Jamalludeena, N., Johnsonb, R.P., Shewena, P.E., and Gyles, C.L., Vet. Microbiol., 2009, vol. 136, pp. 135–141.

    Article  Google Scholar 

  22. Vieu, J.F., Guillermet, F., Mink, R., and Nicolle, P., Bull. Acad. Nat. Med., 1979, pp. 163–168.

    Google Scholar 

  23. Sarker, S.A., McCallin, Sh., Barretto, C., Berger, B., Pittet, A-C., Sultana, Sh., Krause, L., Huq, S., Bibiloni, R., Bruttin, A., Reuteler, G., and Brussow, H., Virology, 2012, vol. 434, no. 2, pp. 222–232.

    Article  CAS  PubMed  Google Scholar 

  24. Sulakvelidze, A. and Kutter, E., in Bacteriophages—Biology and Applications. Bacteriophage Therapy in Humans., Kutter, E. and Sulakvelidze, A., Eds., Boca Raton: CRC Press, 2005, pp. 381–436.

  25. Sulakvelidze, A., Alavidze, Z., and Morris, G., Antimicrob. Agents Chemother., 2001, vol. 45, no. 3, pp. 649–659.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Romling, U. and Tummler, B., J. Clin. Microbiol., 2000, vol. 38, no. 1, pp. 464–465.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Tenover, F.C., Arbeit, R.D., Goering, R.V., Mickelsen, P.A., Murray, B.E., Persingd, H., and Swaminathan, B., J. Clin. Microbiol., 1995, vol. 33, no. 9, pp. 2233–2239.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Adams, M., in Bakteriofagi (Bacteriophages), Moscow: Izd. Inostr. Liter., 1961, pp. 392–459.

    Google Scholar 

  29. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press, 1982.

    Google Scholar 

  30. Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  31. Chanishvili, T.G. and Kapanadze, Zh.S., Trudy TbNIIV, 1967, vol. 6, pp. 91–98.

    Google Scholar 

  32. Osnovy bakteriofagii (Principles of Bacteriophagy), Gabrilovich, I.M., Ed., Minsk: Vysheishaya Shkola, 1973, pp. 97–144.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sh. Balarjishvili.

Additional information

Original Russian Text © N.Sh. Balarjishvili, L.I. Kvachadze, M.I. Kutateladze, T.Sh. Meskhi, T.K. Pataridze, T.A. Berishvili, E.Sh. Tevdoradze, 2015, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2015, Vol. 51, No. 6, pp. 600–609.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balarjishvili, N.S., Kvachadze, L.I., Kutateladze, M.I. et al. New virulent bacteriophages active against multiresistant Pseudomonas aeruginosa strains. Appl Biochem Microbiol 51, 674–682 (2015). https://doi.org/10.1134/S0003683815060034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815060034

Keywords

Navigation