Skip to main content
Log in

Production, purification and characterization of novel laccase produced by Schizophyllum commune NI-07 with potential for delignification of crop residues

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The rumen microbial utilization of energy-rich cell walls of crop residues is hindered by the presence of lignin, which limitsits overall digestion process and significantly influences animal performance. In the frame of the development of a bioprocess using the competences of white rot fungi to enhance digestibility of crop residues by delignification, a new strain of Schizophyllum commune NI-07 was isolated. The sole lignolytic activity detected in submerged culture was laccase which increased 3-fold after immobilization of fungus on polyurethane foam cubes. The enzyme was purified 42-fold by employing ammonium sulphate precipitation and size exclusion chromatography on Sephadex G-50 to a specific activity of 15930 U/mg of protein and had a molecular mass of 75 kDa. The laccase obtained from submerged culture medium after cul- tivation of immobilized S. commune NI-07, exhibited considerably higher pH and thermostability and affinity for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) compared to those obtained without immobilization of the fungus. Highly significant (P < 0.05) improvement in the in vitro dry matter digestibility was obtained in 5 common crop residues treated with fungal laccases. We prove the potential of laccase obtained from S. commune NI-07 in enhancement of digestibility of crop residues by way of delignification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basu, S., Gaur, R., Gomes, J., Sreekrishnan, T.R., and Bisaria, V.S., J. Biosci. Bioeng., 2002, vol. 93, no. 1, pp. 25–30.

    Article  CAS  PubMed  Google Scholar 

  2. Krishna Prasad, K., Venkata Mohan, S., Vijaya Bhaskar, Y., Ramanaiah, S.V., Lalit Babu, V., Pati, B.R., and Sarma, P.N., J. Microbiol., 2005, vol. 43, no. 3, pp. 301–307.

    PubMed  Google Scholar 

  3. Hatakka, A., FEMS Microbiol. Rev., 1994, vol. 13, pp. 125–135.

    Article  CAS  Google Scholar 

  4. Revankar, M.S. and Lele, S.S., Process Biochem., 2001, vol. 41, pp. 581–588.

    Article  Google Scholar 

  5. Pradeep, V.K., Naik, C., and Sridhar, M., Adv. Appl. Res., 2013, vol. 5, no. 1, pp.84–89.

    Google Scholar 

  6. Bourbonnais, R., Leech, D., and Paice, M.G., Biochim. Biophys. Acta, 1998, vol. 1379, no. 3, pp. 381–390.

    Article  CAS  PubMed  Google Scholar 

  7. Sridhar, M., Bhatta, R., Dhali, A., Pradeep, V.K., Thammiaha, V., and Senani, S., Adv. Appl. Res., 2014, vol. 6, no. 1, pp. 45–52.

    Article  Google Scholar 

  8. Van Soest, P.J., Robertson, J.B., and Lewis, B.A., J. Dairy Sci., 1991, vol. 74, no. 10, pp. 3583–3597.

    Article  CAS  PubMed  Google Scholar 

  9. Tilley, J.M.A. and Terry, R.A., J. British Grassland Soc., 1963, vol.18, no. 2, pp. 104–111.

    Article  CAS  Google Scholar 

  10. Farnet, A. M., Criquet, S., Tagger, S., Gil, G., and LePetit, J., Can. J. Microbiol., 2000, vol. 46, no. 3, pp. 189–194.

    Article  CAS  PubMed  Google Scholar 

  11. Sridhar, M., Senani, S., and Bhatta, R., Indian J. Anim. Sci., 2011, vol. 81, no. 7, pp. 723–729.

    CAS  Google Scholar 

  12. Pradeep, V.K., Naik, C., and Sridhar, M., Adv. Appl. Res., 2013, vol. 5, no. 2, pp.124–130.

    Google Scholar 

  13. Schliephake, K., Mainwaring, D.E., Lonergan, G.T., Jones, I.K., and Baker, W.L., Enzyme Microb. Technol., 2000, vol. 27, no. 1–2, pp. 100–107.

    Article  CAS  PubMed  Google Scholar 

  14. Luke, A.K. and Burton, S.G., Enzyme Microb. Technol., 2001, vol. 29, no. 6–7, pp. 348–56.

    Article  CAS  Google Scholar 

  15. Sedarati, M.R., Keshavarz, T., Leontievsky, A.A., and Evans, C.S., Electronic J. Biotechnol., 2003, vol. 6, no. 2, pp. 27–37.

    Google Scholar 

  16. Couto, S.R., Sanromán, M.A., Hofer, D., and Gübitz, G.M., Eng. Life Sci., 2004, vol. 4, no. 3, pp. 233–238.

    Article  CAS  Google Scholar 

  17. Park, C., Lee, B., Han, E.J., Lee, J., and Kim, S., Enzyme Microb. Technol., 2006, vol. 39, no. 3, pp. 371–374.

    Article  CAS  Google Scholar 

  18. Irshad, M., Asgher, M., Sheikh, M.A., and Nawaz, H., BioResources, 2011, vol. 6, no. 3, pp. 2861–2873.

    CAS  Google Scholar 

  19. More, S.S., Renuka, P.S., Pruthvi, K., Swetha, M., Malini, S., and Veena, S. M., Enzyme Res., 2011, Article ID 248735, pp. 1–7.

    Google Scholar 

  20. Yaropolov, A.I., Skorobogatko, O.V., Vartanov, S.S., and Varfolomeyev, S.D., Appl. Biochem. Biotechnol., 1994, vol. 49, no. 3, pp. 257–280.

    Article  CAS  Google Scholar 

  21. Halaburgi, V.M., Sharma, S., Sinha, M., Singh, T.P., and Karegoudar, T.B., Proc. Biochem., 2011, vol. 46, no. 5, pp. 1146–1152.

    Article  CAS  Google Scholar 

  22. Wang, H.X and Ng T.B., Appl. Microbiol. Biotechnol., 2006, vol. 69, no. 5, pp. 521–525.

    Article  CAS  PubMed  Google Scholar 

  23. Baldrian, P., FEMS Microbiol. Rev., 2006, vol. 30, no. 2, pp. 215–242.

    Article  CAS  PubMed  Google Scholar 

  24. Asgher, M., Bhatti, H.N., Ashraf, M., and Legge, R.L., Biodegradation, 2008, vol. 19, pp. no. 6, pp. 771–783.

    Article  CAS  PubMed  Google Scholar 

  25. Xu, F., Li, K., and Elder, T.J., Prog. Biotechnol., 2002, vol. 21, pp. 89–104.

    Article  Google Scholar 

  26. Palmieri, G., Giardina, P., Bianco, C., Fontanella, B., and Sannia, G., Appl. Environ. Microb., 2000, vol. 66, no. 3,pp. 920–924.

    Article  CAS  Google Scholar 

  27. Saito, T., Hong, P., Kato, K., Okazaki, M., Inagaki, H., Maeda, S., and Yokogawa, Y., Enzyme Microb. Technol., 2003, vol. 33, no. 4, pp. 520–526.

    Article  CAS  Google Scholar 

  28. Rosconi, F., Fraguas, L.F., Martinez-Drets, G., and Castro-Sowinski, S., Enzyme Microb. Tech., 2005, vol. 36, nos. 5–6, pp. 800–807.

    Article  CAS  Google Scholar 

  29. Scheel, T., Höfer, M., Ludwing, S., and Hölker, U., Appl. Microbiol. Biotechnol., 2000, vol. 54, no. 5, pp. 686–691.

    Article  CAS  PubMed  Google Scholar 

  30. Lomascolo, A., Record, E., Herpoël-Gimbert, I., Delattre, M., Robert, J. L., Georis, J., et al., J. Appl. Microbiol., 2003, vol. 94, no. 4, pp. 618–624.

    Article  CAS  PubMed  Google Scholar 

  31. Moldes, D., Conto, S.R., Camesckke, C., and Sanroman, M.A., Chemosphere, 2003, vol. 51, no. 4, pp. 295–303.

    Article  CAS  PubMed  Google Scholar 

  32. Stajic, M., Persky, L., Freiesem, D., Hadar, Y., Wasser, P.S., Nevo, E., and Vukojevic, J., Enzyme Microb. Technol., 2006, vol. 38, no. 1–2, pp.65–73.

    Article  CAS  Google Scholar 

  33. Lo, S.C., Ho, Y.,S., and Baswell, J.A., Mycologia, 2001, vol. 93, no. 3, pp. 413–421.

    Article  CAS  Google Scholar 

  34. Rodrigues, M.A.M., Pinto, P., Bezerra. R.M.F., Dias, A.A., Guedes, C.V.M., Cardoso, V.M.G., et al., Anim. Feed Sci. Tech., 2008, vol. 141, no. 3–4, pp. 326–338.

    Article  CAS  Google Scholar 

  35. Belewu, M.A. and Belewu, K.Y., Afr. J. Biotechnol., 2005, vol. 4, no. 1, pp.1401–1403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sridhar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V.P., Naik, C. & Sridhar, M. Production, purification and characterization of novel laccase produced by Schizophyllum commune NI-07 with potential for delignification of crop residues. Appl Biochem Microbiol 51, 432–441 (2015). https://doi.org/10.1134/S0003683815040080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815040080

Keywords

Navigation