Skip to main content
Log in

Molecular cloning, prokaryotic expression and promoter analysis of squalene synthase gene from Schizochytrium Limacinum

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Squalene synthase (SQS) is an important enzyme in the steroid biosynthetic pathways which condenses two molecules of farnesyl pyrophosphate into a squalene. In this study, the gene encoding SQS was isolated from Schizochytrium limacinum and characterized. The full-length cDNA of S. limacinum SQS gene (SlSQS) is 1605 bp in length, it contains a 1293 bp ORF encoding a polypeptide of 430 amino acids. Multiple amino acid sequence alignment showed that the SlSQS protein sequence shared 5 conserved signature domains and a hydrophobic carboxy-terminal part with other known SQS protein sequences. C-terminal-truncated SlSQS was constructed into expression vector pGEX and successfully expressed in Escherichia coli cells. The expressed fusion protein was confirmed to have SQS activity. In addition, a 724 bp promoter region of SlSQS was also cloned and several cis-acting elements were predicted. These results might be helpful to understand the structure and expression regulation of SQS in S. limacinum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Yeagle, P.L., Biochim., 1991, vol. 73, no. 10, pp. 1303–1310.

    Article  CAS  Google Scholar 

  2. Incardona, J.P. and Eaton, S., Curr. Opin. Cell Biol., 2000, vol. 12, no. 2, pp. 193–203.

    Article  CAS  PubMed  Google Scholar 

  3. Takatsuji, H., Nishino, T., Izui, K., and Katsuki, H., J. Biochem., 1982, vol. 91, no. 3, pp. 911–921.

    CAS  PubMed  Google Scholar 

  4. Abe, I., Rohmer, M., and Prestwich, G.D., Chem. Rev., 1993, vol. 93, no. 6, pp. 2189–2206.

    Article  CAS  Google Scholar 

  5. Devarenne, T.P., Ghosh, A., and Chappell, J., Plant Physiol., 2002, vol. 129, no. 3, pp. 1096–1106.

    Article  Google Scholar 

  6. Lee, M.H., Jeong, J.H., Seo, J.W., Shin, C.G., Kim, Y.S., In, J.G., et al., Plant Cell Physiol., 2004, vol. 45, no. 8, pp. 976–984.

    Article  CAS  PubMed  Google Scholar 

  7. Seo, J.W., Jeong, J.H., Shin, C.G., Lo, S.C., Han, S.S., and Yu, K.W., Phytochem., 2005, vol. 66, no. 8, pp. 869–877.

    Article  CAS  Google Scholar 

  8. Kim, Y.S., Cho, J.H., Park, S., Han, J.Y., Back, K., and Choi, Y.E., Planta, 2011, vol. 233, no. 2, pp. 343–355.

    Article  CAS  PubMed  Google Scholar 

  9. Guan, G., Jiang, G., Koch, R.L., and Shechter, I., J. Biol. Chem., 1995, vol. 270, no. 37, pp. 21958–21965.

    Article  CAS  PubMed  Google Scholar 

  10. Matthew, A., Kennedy, A., Robert, B., and Martin, B., Biochim. Biophys. Acta, 1999, vol. 1445, no. 1, pp. 110–122.

    Article  Google Scholar 

  11. Lee, J.H., Yoon, Y.H., Kim, H.Y., Shin, D.H., Kim, D.U., Lee, I.J., and Kim, K.U., Mol. Cells, 2002, vol. 13, no. 3, pp. 436–443.

    CAS  PubMed  Google Scholar 

  12. Bhat, W.W., Lattoo, S.K., Razdan, S., Dhar, N., Rana, S., Dhar, R.S., et al., Gene, 2012, vol. 499, no. 1, pp. 25–36.

    Article  CAS  PubMed  Google Scholar 

  13. Kalra, S., Kumar, S., Lakhanpal, N., Kaur, J., and Singh, K., Mol. Biotechnol., 2013, vol. 54, no. 3, pp. 944–953.

    Article  CAS  PubMed  Google Scholar 

  14. Sun, Y., Long, R., Kang, J., Zhang, T., Zhang, Z., Zhou, H., and Yang, Q., Mol. Biol. Rep., 2013, vol. 40, no. 2, pp. 2035–2044.

    Article  CAS  PubMed  Google Scholar 

  15. Robinson, G.W., Tsay, Y.H., Kienzle, B.K., Smithmonroy, C.A., and Bishop, R.W., Mol. Cell Biol., 1993, vol. 13, no. 5, pp. 2706–2717.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Gu, P., Ishii, Y., Spencer, T.A., and Shechter, I., J. Biol. Chem., 1998, vol. 273, no. 20, pp. 12515–12525.

    Article  CAS  PubMed  Google Scholar 

  17. Pandit, J., Danley, D.E., Schulte, G.K., Mazzalupo, S., Pauty, T.A., Hayward, C.M., et al., J. Biol. Chem., 2000, vol. 275, no. 39, pp. 30610–30617.

    Article  CAS  PubMed  Google Scholar 

  18. Yokochi, T., Honda, D., and Nakahara, T., Appl. Microbol. Biotechnol., 1998, vol. 49, no. 1, pp. 72–76.

    Article  CAS  Google Scholar 

  19. Wu, S.T., Yu, S.T., and Lin, L.P., Process. Biochem., 2005, vol. 40, no. 9, pp. 3103–3108.

    Article  CAS  Google Scholar 

  20. Zhu, L.Y., Zhang, X.C., Ji, L., Song, X.J., and Kuang, C.H., Process. Biochem., 2007, vol. 42, no. 2, pp. 210–221.

    Article  CAS  Google Scholar 

  21. Lewis, T.E., Nichols, P.D., and McMeekin, P.A., Mar. Biotechnol., 2001, vol. 3, no. 5, pp. 439–447.

    Article  CAS  PubMed  Google Scholar 

  22. Fan, K.W. and Chen, F., New Technologies and Applications, Yang, S.T., Ed., Amsterdam: Elsevier, 2007.

  23. Tamura, K., Dudley, J., Nei, M., and Kumar, S., Mol. Biol. Evol., 2007, vol. 24, no. 8, pp. 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  24. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  25. Dang, S.Y., Hong, T., Bu, D.W., Tang, J., Fan, J., and Zhang, W., Protein Expres. Purif., 2012, vol. 82, no. 1, pp. 32–36.

    Article  CAS  Google Scholar 

  26. Wu, K.T., Xue, X.C., Li, M., Qin, X., Zhang, C., Li, W.N., et al., Protein Expres. Purif., 2013, vol. 89, no. 2, pp. 124–130.

    Article  Google Scholar 

  27. Zheng, Z.J., Cao, X.Y., Li, C.G., Chen, Y.Q., Yuan, B., Xu, Y., and Jiang, J.H., Acta Physiol. Plant., 2013, vol. 35, no. 10, pp. 3007–3014.

    Article  CAS  Google Scholar 

  28. Heinemeyer, T., Wingender, E., Reuter, I., Hermjakob, H., Kel, A.E., Kel, O.V., et al., Nucleic Acids Res., 1998, vol. 26, no. 1, pp. 362–367.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T., Nucleic Acids Res., 1999, vol. 27, no. 1, pp. 297–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lee, S. and Poulter, C.D., J. Bacteriol., 2008, vol. 190, no. 11, pp. 3808–3816.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Brown, M.S. and Goldstein, J.L., Cell, 1997, vol. 89, no. 3, pp. 331–340.

    Article  CAS  PubMed  Google Scholar 

  32. Nohturfft, A., Yabe, D., Goldstein, J.L., Brown, M.S., and Espenshade, P.J., Cell, 2000, vol. 102, no. 3, pp. 315–323.

    Article  CAS  PubMed  Google Scholar 

  33. Razdan, S., Bhat, W.W., Rana, S., Dhar, N., Lattoo, S.K., Dhar, R.S., and Vishwakarma, R.A., Mol. Biol. Rep., 2013, vol. 40, no. 2, pp. 905–916.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Corresponding author

Correspondence to L. Zhu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhang, X., Chang, L. et al. Molecular cloning, prokaryotic expression and promoter analysis of squalene synthase gene from Schizochytrium Limacinum . Appl Biochem Microbiol 50, 411–419 (2014). https://doi.org/10.1134/S0003683814040140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683814040140

Keywords