Advertisement

Applied Biochemistry and Microbiology

, Volume 50, Issue 4, pp 411–419 | Cite as

Molecular cloning, prokaryotic expression and promoter analysis of squalene synthase gene from Schizochytrium Limacinum

  • L. ZhuEmail author
  • X. Zhang
  • L. Chang
  • A. Wang
  • P. Feng
  • L. Han
Article

Abstract

Squalene synthase (SQS) is an important enzyme in the steroid biosynthetic pathways which condenses two molecules of farnesyl pyrophosphate into a squalene. In this study, the gene encoding SQS was isolated from Schizochytrium limacinum and characterized. The full-length cDNA of S. limacinum SQS gene (SlSQS) is 1605 bp in length, it contains a 1293 bp ORF encoding a polypeptide of 430 amino acids. Multiple amino acid sequence alignment showed that the SlSQS protein sequence shared 5 conserved signature domains and a hydrophobic carboxy-terminal part with other known SQS protein sequences. C-terminal-truncated SlSQS was constructed into expression vector pGEX and successfully expressed in Escherichia coli cells. The expressed fusion protein was confirmed to have SQS activity. In addition, a 724 bp promoter region of SlSQS was also cloned and several cis-acting elements were predicted. These results might be helpful to understand the structure and expression regulation of SQS in S. limacinum.

Keywords

Apply Biochemistry Squalene Purify Fusion Protein Multiple Amino Acid Sequence Alignment Expression Vector pGEX 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yeagle, P.L., Biochim., 1991, vol. 73, no. 10, pp. 1303–1310.CrossRefGoogle Scholar
  2. 2.
    Incardona, J.P. and Eaton, S., Curr. Opin. Cell Biol., 2000, vol. 12, no. 2, pp. 193–203.PubMedCrossRefGoogle Scholar
  3. 3.
    Takatsuji, H., Nishino, T., Izui, K., and Katsuki, H., J. Biochem., 1982, vol. 91, no. 3, pp. 911–921.PubMedGoogle Scholar
  4. 4.
    Abe, I., Rohmer, M., and Prestwich, G.D., Chem. Rev., 1993, vol. 93, no. 6, pp. 2189–2206.CrossRefGoogle Scholar
  5. 5.
    Devarenne, T.P., Ghosh, A., and Chappell, J., Plant Physiol., 2002, vol. 129, no. 3, pp. 1096–1106.CrossRefGoogle Scholar
  6. 6.
    Lee, M.H., Jeong, J.H., Seo, J.W., Shin, C.G., Kim, Y.S., In, J.G., et al., Plant Cell Physiol., 2004, vol. 45, no. 8, pp. 976–984.PubMedCrossRefGoogle Scholar
  7. 7.
    Seo, J.W., Jeong, J.H., Shin, C.G., Lo, S.C., Han, S.S., and Yu, K.W., Phytochem., 2005, vol. 66, no. 8, pp. 869–877.CrossRefGoogle Scholar
  8. 8.
    Kim, Y.S., Cho, J.H., Park, S., Han, J.Y., Back, K., and Choi, Y.E., Planta, 2011, vol. 233, no. 2, pp. 343–355.PubMedCrossRefGoogle Scholar
  9. 9.
    Guan, G., Jiang, G., Koch, R.L., and Shechter, I., J. Biol. Chem., 1995, vol. 270, no. 37, pp. 21958–21965.PubMedCrossRefGoogle Scholar
  10. 10.
    Matthew, A., Kennedy, A., Robert, B., and Martin, B., Biochim. Biophys. Acta, 1999, vol. 1445, no. 1, pp. 110–122.CrossRefGoogle Scholar
  11. 11.
    Lee, J.H., Yoon, Y.H., Kim, H.Y., Shin, D.H., Kim, D.U., Lee, I.J., and Kim, K.U., Mol. Cells, 2002, vol. 13, no. 3, pp. 436–443.PubMedGoogle Scholar
  12. 12.
    Bhat, W.W., Lattoo, S.K., Razdan, S., Dhar, N., Rana, S., Dhar, R.S., et al., Gene, 2012, vol. 499, no. 1, pp. 25–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Kalra, S., Kumar, S., Lakhanpal, N., Kaur, J., and Singh, K., Mol. Biotechnol., 2013, vol. 54, no. 3, pp. 944–953.PubMedCrossRefGoogle Scholar
  14. 14.
    Sun, Y., Long, R., Kang, J., Zhang, T., Zhang, Z., Zhou, H., and Yang, Q., Mol. Biol. Rep., 2013, vol. 40, no. 2, pp. 2035–2044.PubMedCrossRefGoogle Scholar
  15. 15.
    Robinson, G.W., Tsay, Y.H., Kienzle, B.K., Smithmonroy, C.A., and Bishop, R.W., Mol. Cell Biol., 1993, vol. 13, no. 5, pp. 2706–2717.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Gu, P., Ishii, Y., Spencer, T.A., and Shechter, I., J. Biol. Chem., 1998, vol. 273, no. 20, pp. 12515–12525.PubMedCrossRefGoogle Scholar
  17. 17.
    Pandit, J., Danley, D.E., Schulte, G.K., Mazzalupo, S., Pauty, T.A., Hayward, C.M., et al., J. Biol. Chem., 2000, vol. 275, no. 39, pp. 30610–30617.PubMedCrossRefGoogle Scholar
  18. 18.
    Yokochi, T., Honda, D., and Nakahara, T., Appl. Microbol. Biotechnol., 1998, vol. 49, no. 1, pp. 72–76.CrossRefGoogle Scholar
  19. 19.
    Wu, S.T., Yu, S.T., and Lin, L.P., Process. Biochem., 2005, vol. 40, no. 9, pp. 3103–3108.CrossRefGoogle Scholar
  20. 20.
    Zhu, L.Y., Zhang, X.C., Ji, L., Song, X.J., and Kuang, C.H., Process. Biochem., 2007, vol. 42, no. 2, pp. 210–221.CrossRefGoogle Scholar
  21. 21.
    Lewis, T.E., Nichols, P.D., and McMeekin, P.A., Mar. Biotechnol., 2001, vol. 3, no. 5, pp. 439–447.PubMedCrossRefGoogle Scholar
  22. 22.
    Fan, K.W. and Chen, F., New Technologies and Applications, Yang, S.T., Ed., Amsterdam: Elsevier, 2007.Google Scholar
  23. 23.
    Tamura, K., Dudley, J., Nei, M., and Kumar, S., Mol. Biol. Evol., 2007, vol. 24, no. 8, pp. 1596–1599.PubMedCrossRefGoogle Scholar
  24. 24.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.Google Scholar
  25. 25.
    Dang, S.Y., Hong, T., Bu, D.W., Tang, J., Fan, J., and Zhang, W., Protein Expres. Purif., 2012, vol. 82, no. 1, pp. 32–36.CrossRefGoogle Scholar
  26. 26.
    Wu, K.T., Xue, X.C., Li, M., Qin, X., Zhang, C., Li, W.N., et al., Protein Expres. Purif., 2013, vol. 89, no. 2, pp. 124–130.CrossRefGoogle Scholar
  27. 27.
    Zheng, Z.J., Cao, X.Y., Li, C.G., Chen, Y.Q., Yuan, B., Xu, Y., and Jiang, J.H., Acta Physiol. Plant., 2013, vol. 35, no. 10, pp. 3007–3014.CrossRefGoogle Scholar
  28. 28.
    Heinemeyer, T., Wingender, E., Reuter, I., Hermjakob, H., Kel, A.E., Kel, O.V., et al., Nucleic Acids Res., 1998, vol. 26, no. 1, pp. 362–367.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T., Nucleic Acids Res., 1999, vol. 27, no. 1, pp. 297–300.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lee, S. and Poulter, C.D., J. Bacteriol., 2008, vol. 190, no. 11, pp. 3808–3816.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Brown, M.S. and Goldstein, J.L., Cell, 1997, vol. 89, no. 3, pp. 331–340.PubMedCrossRefGoogle Scholar
  32. 32.
    Nohturfft, A., Yabe, D., Goldstein, J.L., Brown, M.S., and Espenshade, P.J., Cell, 2000, vol. 102, no. 3, pp. 315–323.PubMedCrossRefGoogle Scholar
  33. 33.
    Razdan, S., Bhat, W.W., Rana, S., Dhar, N., Lattoo, S.K., Dhar, R.S., and Vishwakarma, R.A., Mol. Biol. Rep., 2013, vol. 40, no. 2, pp. 905–916.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • L. Zhu
    • 1
    Email author
  • X. Zhang
    • 2
  • L. Chang
    • 1
  • A. Wang
    • 3
  • P. Feng
    • 1
  • L. Han
    • 1
  1. 1.College of AgricultureLudong UniversityYantaiChina
  2. 2.College of Marine Life SciencesOcean University of ChinaQingdaoChina
  3. 3.College of Life SciencesLudong UniversityYantaiChina

Personalised recommendations