Skip to main content
Log in

Molecular mutagenesis at Tyr-101 of the amylomaltase transcribed from a gene isolated from soil DNA

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The wild-type (WT) amylomaltase gene was directly isolated from soil DNA and cloned into a pET19b vector to express in E. coli BL21(DE3). The ORF of this gene consisted of 1,572 bp, encoding an enzyme of 523 amino acids. Though showing 99% sequence identity to amylomaltse from Thermus thermophilus ATCC 33923, this enzyme is unique in its alkaline optimum pH. In order to alter amylomaltase with less coupling or hydrolytic activity to enhance cycloamylose (CA) formation through cyclization reaction, site-directed mutagenesis of the second glucan binding site involving in CA production was performed at Tyr-101. The result revealed that the mutated Y101S enzyme showed a small increase in cyclization activity while significantly decreased disproportionation, coupling and hydrolytic activities. Mutation also resulted in the change in substrate specificity for disproportionation reaction. The WT enzyme preferred maltotriose, while the activity of mutated enzyme was the highest with maltopentaose substrate. Product analysis by HPAEC-PAD demonstrated that the main CAs of the WT amylomaltase were CA29-CA37. Y101S mutation did not change the product pattern, however, the amount of CAs formed by the mutated enzyme tended to increase especially at long incubation time. The article is published in the original.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Godány, A., Vidová, B., and Janecek, S., FEMS Microbiol. Lett., 2008, vol. 284, no. 1, pp. 84–91.

    Article  PubMed  Google Scholar 

  2. Endo, T., Zheng, M., and Zimmermann, W., Aust. J. Chem., 2002, vol. 55, no. 1–2, pp. 39–48.

    Article  CAS  Google Scholar 

  3. Takaha, T. and Smith, S.M., Biotechnol. Genet. Eng. Rev., 1999, vol. 16, pp. 257–280.

    Article  CAS  PubMed  Google Scholar 

  4. Lee, H.S., Auh, J.H., Yoon, H.G., Kim, M.J., Park, J.H., Hong, S.S., et al., J. Agric. Food. Chem., 2002, vol. 50, no. 10, pp. 2812–2817.

    Article  CAS  PubMed  Google Scholar 

  5. Kaper, T., Talik, B., Ettema, T.J., Bos, H., van der Maarel, M.J., and Dijkhuizen, L., Appl. Environ. Microbiol., 2005, vol. 71, no. 9, pp. 5098–5106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gessler, K., Usón, I., Takaha, T., Krauss, N., Smith, S.M., and Okada, S., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no. 8, pp. 4246–4251.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kitamura, S., Nakatani, K., Takaha, T., and Okada, S., Macromol. Rapid Commun., 1999, vol. 20, no. 12, pp. 612–615.

    Article  CAS  Google Scholar 

  8. Tomono, K., Mugishima, A., Suzuki, T., Goto, H., Ueda, H., Nagai, T., and Watanabe, J., J. Inclusion Phenom. Mol. Recognit. Chem., 2002, vol. 44, no. 1, pp. 267–270.

    Article  CAS  Google Scholar 

  9. Monod, J. and Torriani, A.M., Ann. Ins. Pasteur, 1950, vol. 78, no. 1, pp. 65–77.

    CAS  Google Scholar 

  10. Goda, S.K., Eissa, O., Akhtar, M., and Minton, N.P., Microbiology, 1997, vol. 143, pp. 3287–3294.

    Article  CAS  PubMed  Google Scholar 

  11. Terada, Y., Fujii, K., Takaha, T., and Okada, S., Appl. Environ. Microbiol., 1999, vol. 65, no. 3, pp. 910–915.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Bhuiyan, S.H., Kitaoka, M., and Hayashi, K., J. Mol. Catal. B: Enzym., 2003, vol. 22, no. 1–2, pp. 45–53.

    Article  CAS  Google Scholar 

  13. Srisimarat, W., Powviriyakul, A., Kaulpiboon, J., Krusong, K., Zimmermann, W., and Pongsawasdi, P., J. Incl. Phenom. Macrocycl. Chem., 2010, vol. 70, no. 3–4, pp. 369–375.

    Google Scholar 

  14. Przylas, I., Terada, Y., Fujii, K., Takaha, T., Saenger, W., and Sträter, N., Eur. J. Biochem., 2000, vol. 267, no. 23, pp. 6903–6913.

    CAS  PubMed  Google Scholar 

  15. Sträter, N., Przylas, I., Saenger, W., Terada, Y., Fujii, K., and Takaha, T., Biologia, 2002, vol. 57, no. 11, pp. 93–99.

    Google Scholar 

  16. Fujii, K., Minagawa, H., Terada, Y., Takaha, T., Kuriki, T., Shimada, J., and Kaneko, H., Appl. Environ. Microbiol., 2005, vol. 71, no. 10, pp. 5823–5827.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Fujii, K., Minagawa, H., Terada, Y., Takaha, T., Kuriki, T., Shimada, J., and Kaneko, H., J. Biosci. Bioeng., 2007, vol. 103, no. 2, pp. 167–173.

    Article  CAS  PubMed  Google Scholar 

  18. Srisimarat, W., Kaulpiboon, J., Krusong, K., Zimmermann, W., and Pongsawasdi, P., Appl. Environ. Microbiol., 2012, vol. 78, no. 20, pp. 7223–7228.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sawasdee, K., Rudeekulthamrong, P., Zimmermann, W., Murakami, S., Pongsawasdi, P., and Kaulpiboon, J., Appl. Biochem. Microbiol., 2014, vol. 50, no. 1, pp. 17–24.

    Article  CAS  Google Scholar 

  20. Park, J.H., Kim, H.J., Kim, Y.H., Cha, H., Kim, Y.W., Kim, T.J. et al., Carbohydr. Polym., 2007, vol. 67, no. 2, pp. 164–173.

    Article  CAS  Google Scholar 

  21. Bradford, M.M., Anal. Biochem., 1976, vol. 7, nos. 1–2, pp. 248–254.

    Article  Google Scholar 

  22. Miwa, I., Okuda, J., Maeda, K., and Okuda, G., Clin. Chim. Acta, 1972, vol. 37, pp. 538–540.

    Article  CAS  PubMed  Google Scholar 

  23. Koizumi, K., Sanbe, H., Kubota, Y., Terada, Y., and Takaha, T., J. Chromatogr. A, 1999, vol. 852, no. 2, pp. 407–416.

    Article  CAS  PubMed  Google Scholar 

  24. Sinner, M. and Puls, J., J. Chromatogr. A, 1978, vol. 156, no. 1, pp. 197–204.

    Article  CAS  Google Scholar 

  25. Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  26. Kaper, T., Leemhuis, H., Uitdehaag, J.C.M., van der Veen, B.A., Dijkstra, B.W., van der Maarel, M.J.E.C, and Dijkhuizen, L., Biochemistry, 2007, vol. 46, no. 17, pp. 5261–5269.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kaulpiboon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanasatitarpa, S., Rudeekulthamrong, P., Krusong, K. et al. Molecular mutagenesis at Tyr-101 of the amylomaltase transcribed from a gene isolated from soil DNA. Appl Biochem Microbiol 50, 243–252 (2014). https://doi.org/10.1134/S0003683814030168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683814030168

Keywords

Navigation