Skip to main content

Advertisement

Log in

Xylanase and cellulase of fungus Cerrena unicolor VKM F-3196: Production, properties, and applications for the saccharification of plant material

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Under the conditions of submerged cultivation in a medium containing microcrystalline cellulose, the Cerrena unicolor VKM F-3196 basidiomycete is capable of producing xylanase and cellulase. Electrophoretically homogeneous cellulase and xylanase were obtained using ion exchange and hydrophobic chromatography. The molecular weight of both cellulase and xylanase was ∼44 kDa. It was shown that xylanase catalyzed the hydrolysis of xylan with the production of xylose, xylobiose, and xylotetrose and it exhibited properties of endoxylanases. Cellulase hydrolyzed carboxymethylcellulose, xylan, and microcrystalline cellulose with the formation of cellotriose and cellotetraose. For both enzymes, the pH optimum was ∼4.0. The enzymes exhibited moderate thermostability: xylanase retained 35% of the initial activity for 1 h at 60°C; cellulase, 10% under the same conditions. Xylanase, cellulose, and a mixture of these enzymes saccharified plant material (wheat, rye, wheat middling, and oat), indicating the possible use of these enzymes in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Fengel, D. and Vegener, G., Drevesina: khimiya, ul’trastruktura, reaktsii (Wood: Chemistry, UNtrastructure, and Reactions), Moscow: Lesn. Prom., 1988.

    Google Scholar 

  2. Ebringerova, A., Macromol. Symp., 2006, vol. 232, pp. 1–12.

    Article  CAS  Google Scholar 

  3. Scheller, H.V. and Ulvskov, P., Annu. Rev. Plant Biol., 2010, vol. 61, pp. 263–289.

    Article  CAS  PubMed  Google Scholar 

  4. Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S., Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 3, pp. 506–577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Baldrian, P. and Valaskova, V., FEMS Microbiol. Rev., 2008, vol. 32, no. 3, pp. 501–521.

    Article  CAS  PubMed  Google Scholar 

  6. Saha, B.C. and Bothast, R.J., Biopolymers. ACS Symposium Series, 1999, vol. 723, pp. 167–194.

    Article  CAS  Google Scholar 

  7. Sukumaran, R.K., Singhania, R.R., and Pandey, A., J. Sci. Ind. Res., 2005, vol. 64, no. 11, pp. 832–844.

    CAS  Google Scholar 

  8. Bajpai, P., Biotechnol. Prog., 1999, vol. 15, no. 2, pp. 147–157.

    Article  CAS  PubMed  Google Scholar 

  9. Silversides, F.G., Scott, T.A., Korver, D.R., Afsharmanesh, M., and Hruby, M., Poult. Sci., 2006, vol. 85, no. 2, pp. 297–305.

    Article  CAS  PubMed  Google Scholar 

  10. Butt, M.S., Tahir-Nadeem, M., Ahmad, Z., and Sultan, M.T., Food Technol. Biotechnol., 2008, vol. 46, no. 1, pp. 22–31.

    CAS  Google Scholar 

  11. Kim, J.C., Simmins, P.H., Mullan, B.P., and Pluske, J.R., Animal Feed Sci. Technol., 2005, vol. 122, nos. 3–4, pp. 257–287.

    Article  Google Scholar 

  12. Markov, A.V., Gusakov, A.V., Dzedzyulya, E.I., Ustinov, B.B., Antonov, A.A., Okunev, O.N., Bekkapevich, A.O., and Sinitsyn, A.P, Appl. Biochem. Microbiol., 2006, vol. 42, no. 6, pp. 573–583.

    Article  CAS  Google Scholar 

  13. Volkov, P.V., Rozhkova, A.M., Pravil’nikov, A.G., Andrianov, R.M., Dotsenko, G.S., Bekkarevich, A.O., Koshelev, A.V., Okunev, O.N., Zorov, I.N., and Sinitsyn, A.P., Appl. Biochem. Microbiol., 2012, vol. 48, no. 1, pp. 58–64.

    Article  CAS  Google Scholar 

  14. Floudas, D., Binder, M., Riley, R., et al., Science, 2012, vol. 336, pp. 1715–1719.

    Article  CAS  PubMed  Google Scholar 

  15. Robyt, J.F., Ackerman, R.J., and Keng, J.G., Anal. Biochem., 1972, vol. 45, no. 2, pp. 517–524.

    Article  CAS  PubMed  Google Scholar 

  16. Britton, H.T.S. and Robinson, R.A., J. Chem. Soc., 1931, pp. 1456–1462.

    Google Scholar 

  17. Michniewicz, A., Ullrich, R., Ledakowicz, S., and Hofrichter, M., Appl. Microbiol. Biotechnol., 2006, vol. 69, no. 6, pp. 682–688.

    Article  CAS  PubMed  Google Scholar 

  18. Lisova, Z.A., Lisov, A.V., and Leontievsky, A.A., J. Basic Microbiol., 2010, vol. 50, no. 1, pp. 72–82.

    Article  CAS  PubMed  Google Scholar 

  19. Elisashvili, V.I., Kakhishvili, E.T., and Bakradze, M.S., Appl. Biochem. Microbiol., 2002, vol. 38, no. 3, pp. 210–214.

    Article  CAS  Google Scholar 

  20. Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., and Amorim, D.S., Appl. Microbiol. Biotechnol., 2005, vol. 67, no. 5, pp. 577–591.

    Article  CAS  PubMed  Google Scholar 

  21. Baraznenok, V.A., Becker, E.G., Ankudimova, N.V., and Okunev, N.N., Enzyme Microb. Technol., 1999, vol. 25, no. 7, pp. 651–659.

    Article  CAS  Google Scholar 

  22. Uzcategui, E., Johansson, G., Ek, B., and Pettersson, G., J. Biotechnol., 1991, vol. 21, nos. 1–2, pp. 143–160.

    Article  CAS  PubMed  Google Scholar 

  23. Cohen, R., Suzuki, M.R., and Hammel, K.E., Appl. Environ. Microbiol., 2005, vol. 71, no. 5, pp. 2412–2417.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Biely, P., VrSanskh, M., Tenkanen, M., and Kluepfel, D., J. Biotechnol., 1997, vol. 57, nos. 1–3, pp. 151–166.

    Article  CAS  PubMed  Google Scholar 

  25. Elegir, G., Szakacs, G., and Jeffries, T.W., Appl. Environ. Microbiol., 1994, vol. 60, no. 7, pp. 2609–2615.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Li, X., Li, E., Zhu, Y., Teng, C., Sun, B., Song, H., and Yang, R., Carbohydr. Res., 2012, vol. 359, pp. 30–36.

    Article  CAS  PubMed  Google Scholar 

  27. Murad, H.A. and Azzaz, H.H., Biothechnology, 2010, vol. 9, no. 3, pp. 238–256.

    CAS  Google Scholar 

  28. Hu, J., Arantes, V., and Saddler, J.N., Biotechnol. Biofuels, 2011, vol. 4, pp. 36–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Knudsen, K.E.B., Animal Feed Sci. Technol., 1997, vol. 67, no. 4, pp. 319–338.

    Article  Google Scholar 

  30. Gebruers, K., Dornez, E., Bedo, Z., Rakszegi, M., Courtin, C.M., and Delcour, J.A., J. Agric. Food Chem., 2010, vol. 58, no. 17, pp. 9362–9371.

    Article  CAS  PubMed  Google Scholar 

  31. Faulds, C.B., Mandalari, G., Lo, CurtoR.B., Bisignano, G., Christakopoulos, P., and Waldron, K.W., Appl. Microbiol. Biotechnol., 2006, vol. 71, no. 7, pp. 622–629.

    Article  CAS  PubMed  Google Scholar 

  32. Ximenes, E., Kim, Y., Mosier, N., Dien, B., and Ladisch, M., Enzyme Microb. Technol., 2011, vol. 48, no. 1, pp. 54–60.

    Article  CAS  PubMed  Google Scholar 

  33. Qing, Q., Yang, B., and Wyman, C.E., Biores. Technol., 2010, vol. 101, no. 24, pp. 9624–9630.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Belova.

Additional information

Original Russian Text © O.V. Belova, A.V. Lisov, N.G. Vinokurova, A.A. Kostenevich, L.I. Sapunova, A.G. Lobanok, A.A. Leontievsky, 2014, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2014, Vol. 50, No. 2, pp. 171–176.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belova, O.V., Lisov, A.V., Vinokurova, N.G. et al. Xylanase and cellulase of fungus Cerrena unicolor VKM F-3196: Production, properties, and applications for the saccharification of plant material. Appl Biochem Microbiol 50, 148–153 (2014). https://doi.org/10.1134/S0003683814020057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683814020057

Keywords