Abstract
Under the conditions of submerged cultivation in a medium containing microcrystalline cellulose, the Cerrena unicolor VKM F-3196 basidiomycete is capable of producing xylanase and cellulase. Electrophoretically homogeneous cellulase and xylanase were obtained using ion exchange and hydrophobic chromatography. The molecular weight of both cellulase and xylanase was ∼44 kDa. It was shown that xylanase catalyzed the hydrolysis of xylan with the production of xylose, xylobiose, and xylotetrose and it exhibited properties of endoxylanases. Cellulase hydrolyzed carboxymethylcellulose, xylan, and microcrystalline cellulose with the formation of cellotriose and cellotetraose. For both enzymes, the pH optimum was ∼4.0. The enzymes exhibited moderate thermostability: xylanase retained 35% of the initial activity for 1 h at 60°C; cellulase, 10% under the same conditions. Xylanase, cellulose, and a mixture of these enzymes saccharified plant material (wheat, rye, wheat middling, and oat), indicating the possible use of these enzymes in biotechnology.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Fengel, D. and Vegener, G., Drevesina: khimiya, ul’trastruktura, reaktsii (Wood: Chemistry, UNtrastructure, and Reactions), Moscow: Lesn. Prom., 1988.
Ebringerova, A., Macromol. Symp., 2006, vol. 232, pp. 1–12.
Scheller, H.V. and Ulvskov, P., Annu. Rev. Plant Biol., 2010, vol. 61, pp. 263–289.
Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S., Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 3, pp. 506–577.
Baldrian, P. and Valaskova, V., FEMS Microbiol. Rev., 2008, vol. 32, no. 3, pp. 501–521.
Saha, B.C. and Bothast, R.J., Biopolymers. ACS Symposium Series, 1999, vol. 723, pp. 167–194.
Sukumaran, R.K., Singhania, R.R., and Pandey, A., J. Sci. Ind. Res., 2005, vol. 64, no. 11, pp. 832–844.
Bajpai, P., Biotechnol. Prog., 1999, vol. 15, no. 2, pp. 147–157.
Silversides, F.G., Scott, T.A., Korver, D.R., Afsharmanesh, M., and Hruby, M., Poult. Sci., 2006, vol. 85, no. 2, pp. 297–305.
Butt, M.S., Tahir-Nadeem, M., Ahmad, Z., and Sultan, M.T., Food Technol. Biotechnol., 2008, vol. 46, no. 1, pp. 22–31.
Kim, J.C., Simmins, P.H., Mullan, B.P., and Pluske, J.R., Animal Feed Sci. Technol., 2005, vol. 122, nos. 3–4, pp. 257–287.
Markov, A.V., Gusakov, A.V., Dzedzyulya, E.I., Ustinov, B.B., Antonov, A.A., Okunev, O.N., Bekkapevich, A.O., and Sinitsyn, A.P, Appl. Biochem. Microbiol., 2006, vol. 42, no. 6, pp. 573–583.
Volkov, P.V., Rozhkova, A.M., Pravil’nikov, A.G., Andrianov, R.M., Dotsenko, G.S., Bekkarevich, A.O., Koshelev, A.V., Okunev, O.N., Zorov, I.N., and Sinitsyn, A.P., Appl. Biochem. Microbiol., 2012, vol. 48, no. 1, pp. 58–64.
Floudas, D., Binder, M., Riley, R., et al., Science, 2012, vol. 336, pp. 1715–1719.
Robyt, J.F., Ackerman, R.J., and Keng, J.G., Anal. Biochem., 1972, vol. 45, no. 2, pp. 517–524.
Britton, H.T.S. and Robinson, R.A., J. Chem. Soc., 1931, pp. 1456–1462.
Michniewicz, A., Ullrich, R., Ledakowicz, S., and Hofrichter, M., Appl. Microbiol. Biotechnol., 2006, vol. 69, no. 6, pp. 682–688.
Lisova, Z.A., Lisov, A.V., and Leontievsky, A.A., J. Basic Microbiol., 2010, vol. 50, no. 1, pp. 72–82.
Elisashvili, V.I., Kakhishvili, E.T., and Bakradze, M.S., Appl. Biochem. Microbiol., 2002, vol. 38, no. 3, pp. 210–214.
Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., and Amorim, D.S., Appl. Microbiol. Biotechnol., 2005, vol. 67, no. 5, pp. 577–591.
Baraznenok, V.A., Becker, E.G., Ankudimova, N.V., and Okunev, N.N., Enzyme Microb. Technol., 1999, vol. 25, no. 7, pp. 651–659.
Uzcategui, E., Johansson, G., Ek, B., and Pettersson, G., J. Biotechnol., 1991, vol. 21, nos. 1–2, pp. 143–160.
Cohen, R., Suzuki, M.R., and Hammel, K.E., Appl. Environ. Microbiol., 2005, vol. 71, no. 5, pp. 2412–2417.
Biely, P., VrSanskh, M., Tenkanen, M., and Kluepfel, D., J. Biotechnol., 1997, vol. 57, nos. 1–3, pp. 151–166.
Elegir, G., Szakacs, G., and Jeffries, T.W., Appl. Environ. Microbiol., 1994, vol. 60, no. 7, pp. 2609–2615.
Li, X., Li, E., Zhu, Y., Teng, C., Sun, B., Song, H., and Yang, R., Carbohydr. Res., 2012, vol. 359, pp. 30–36.
Murad, H.A. and Azzaz, H.H., Biothechnology, 2010, vol. 9, no. 3, pp. 238–256.
Hu, J., Arantes, V., and Saddler, J.N., Biotechnol. Biofuels, 2011, vol. 4, pp. 36–49.
Knudsen, K.E.B., Animal Feed Sci. Technol., 1997, vol. 67, no. 4, pp. 319–338.
Gebruers, K., Dornez, E., Bedo, Z., Rakszegi, M., Courtin, C.M., and Delcour, J.A., J. Agric. Food Chem., 2010, vol. 58, no. 17, pp. 9362–9371.
Faulds, C.B., Mandalari, G., Lo, CurtoR.B., Bisignano, G., Christakopoulos, P., and Waldron, K.W., Appl. Microbiol. Biotechnol., 2006, vol. 71, no. 7, pp. 622–629.
Ximenes, E., Kim, Y., Mosier, N., Dien, B., and Ladisch, M., Enzyme Microb. Technol., 2011, vol. 48, no. 1, pp. 54–60.
Qing, Q., Yang, B., and Wyman, C.E., Biores. Technol., 2010, vol. 101, no. 24, pp. 9624–9630.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © O.V. Belova, A.V. Lisov, N.G. Vinokurova, A.A. Kostenevich, L.I. Sapunova, A.G. Lobanok, A.A. Leontievsky, 2014, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2014, Vol. 50, No. 2, pp. 171–176.
Rights and permissions
About this article
Cite this article
Belova, O.V., Lisov, A.V., Vinokurova, N.G. et al. Xylanase and cellulase of fungus Cerrena unicolor VKM F-3196: Production, properties, and applications for the saccharification of plant material. Appl Biochem Microbiol 50, 148–153 (2014). https://doi.org/10.1134/S0003683814020057
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0003683814020057


