Skip to main content
Log in

Thromboresistance of glucose-containing hydrogels

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The thromboresistance of glucose-sensitive polymer hydrogels, modeling one of the functions of the pancreas, namely, the ability to secrete insulin in response to the introduction of glucose into the environment, has been studied. Hydrogels were synthesized by the copolymerization of hydroxyethyl methacrylate with N-acryloyl glucosamine in the presence of a cross-linking agent and subsequently treated with concanavalin A. Introduction of glucose residues into the hydrogel did not result in significant changes in either the number of trombocytes adhered to the hydrogel or the degree of denaturation of blood plasma proteins interacting with the hydrogel. Consequently, the biological activity of insulin did not change after release from the hydrogel. The use of glucose-sensitive hydrogels is supposed to contribute to the development of a novel strategy for the treatment of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kashyap, N., Viswanad, B., Sharma, G., Bhardwaj, V., Ramarao, P., and Ravi, Kumar M.N., Biomaterials, 2007, vol. 28, no. 11, pp. 2051–2060.

    Article  PubMed  CAS  Google Scholar 

  2. Valuev, I.L., Chupov, V.V., Sytov, G.A., Valuev, L.I., and Plate, N.A., Vysokomol. Soedin. B, 1997, vol. 39, no. 4, pp. 751–754.

    CAS  Google Scholar 

  3. Valuev, I.L., Vanchugova, L.V., and Valuev, L.I., Vysokomol. Soedin. A, 2011, vol. 53, no. 5, pp. 691–695.

    Google Scholar 

  4. Ivakura, Y., Imai, Y., and Vagu, Y., J. Polym. Sci. A-1, 1968, vol. 6, no. 6, p. 1625.

    Article  Google Scholar 

  5. Biosovmestimost’ (Biocompatibility), Sevast’yanov, V.I., Ed., Moscow: Inform. Tsentr Nauchno-Issled. Inst. Geosist., 1999.

    Google Scholar 

  6. Kim, S.W., Lee, R.D., Coleman, D., Oster, H., Andrade, J.D., and Olsen, D.B., Trans. Am. Soc. Art. Int. Org., 1974, vol. 20, pp. 449–454.

    Google Scholar 

  7. Jorgensen, K.A. and Stoffersen, E., Thromb. Res., 1980, vol. 17, pp. 13–18.

    Article  PubMed  CAS  Google Scholar 

  8. Jamieson, G.A., Birth Defects Orig. Artic Ser., 1973, vol. 9, no. 2, pp. 202–205.

    PubMed  CAS  Google Scholar 

  9. Jamieson, G.A., Smith, D.F., and Kosow, D.P., Thromb. Diath. Haemorrh., 1975, vol. 33, no. 3, pp. 668–671.

    PubMed  CAS  Google Scholar 

  10. Smith, D.F., Kosow, D.P., and Jamieson, G.A., Thromb. Diath. Haemorrh., 1975, vol. 34, no. 1, pp. 334–337.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Valuev.

Additional information

Original Russian Text © I.L. Valuev, L.I. Valuev, L.V. Vanchugova, I.V. Obydennova, T.A. Valueva, 2013, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2013, Vol. 49, No. 3, pp. 319–321.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valuev, I.L., Valuev, L.I., Vanchugova, L.V. et al. Thromboresistance of glucose-containing hydrogels. Appl Biochem Microbiol 49, 312–314 (2013). https://doi.org/10.1134/S0003683813030162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683813030162

Keywords

Navigation