Applied Biochemistry and Microbiology

, Volume 49, Issue 3, pp 233–243 | Cite as

Microbiological synthesis of [2H]-inosine with a high degree of isotopic enrichment by the gram-positive chemoheterotrophic bacterium Bacillus subtilis

  • O. V. MosinEmail author
  • V. I. Shvets
  • D. A. Skladnev
  • I. Ignatov


A 2H-labeled purine ribonucleoside inosine was microbiologically synthesized (yield, 3.9 g/L of culture liquid) using a deuterium-adapted strain of the gram-positive chemoheterotrophic bacterium Bacillus subtilis, cultivated in a heavy water medium with a high degree of deuteration (99.8 at % 2H) containing 2% hydrolysate of deuterated biomass of the methylotrophic bacterium Brevibacterium methylicum as a source of 2H-labeled growth substrate produced in an M9 minimal medium with 98% 2H2O and 2% [2H]-methanol. The inosine extracted from the culture liquid of the producer strain was fractionated by adsorption (desorption) on an activated carbon surface, extraction with 0.3 M ammonium-formate buffer (pH 8.9), subsequent crystallization in 80% ethanol, and ion exchange chromatography on a column with AG50WX 4 cation exchange resin equilibrated with 0.3 M ammonium-formate buffer containing 0.045 M NH4Cl. Fast atom bombardment (FAB) mass spectrometry demonstrated incorporation of five deuterium atoms in the inosine molecule (62.5% 2H), three of which were contained in the ribose moiety and two in the hypoxanthine moiety.


Deuterium Apply Biochemistry Inosine Deuterium Atom Fast Atom Bombardment Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andres, H., in Synthesis and Applications of Isotopically Labelled Compounds, Pleiss, U. and Voges, R., Eds., New York: Wiley, 2001, vol. 7.Google Scholar
  2. 2.
    Kundu, M.K., Trifonova, A., Dinya, Z., Foldes, A., and Chattopadhyaya, J., Nucleosid. Nucleotid. Nucleic Acids, 2001, vol. 20, nos. 4–7, pp. 1333–1337.CrossRefGoogle Scholar
  3. 3.
    Kushner, D.J., Baker, A., and Dunstall, T.G., Can. J. Physiol. Pharmacol., 1999, vol. 77, no. 2, pp. 79–88.PubMedCrossRefGoogle Scholar
  4. 4.
    Crespi, H.L., in Synthesis and Applications of Isotopically Labeled Compounds. Proc. 2nd Intern. Sympos., Baillie, T. and Jones, J.R., Eds., Amsterdam: Elsevier, 1989, p. 332.Google Scholar
  5. 5.
    Caire, G., de la Barca, C.A.M., Bolanos, A.V., Valencia, M.E., Coward, A.W., Salazar, G., and Casanueva, E., Food Nutr. Bull., 2002, vol. 23, no. 3, pp. 38–41.PubMedGoogle Scholar
  6. 6.
    Shvets, V.I., Yurkevich, A.M., Mosin, O.V., and Skladnev, D.A., Karadeniz J. Med. Sci., 1995, vol. 8, no. 4, p. 231.Google Scholar
  7. 7.
    Lukin, M. and Santos, C., Nucleosid. Nucleotid. Nucleic Acids, 2010, vol. 29, no. 7, pp. 562–573.CrossRefGoogle Scholar
  8. 8.
    Chirakul, P., Litzer, J.R., and Sigurdsson, S.T., Nucleosid. Nucleotid. Nucleic Acids, 2001, vol. 20, no. 12, pp. 1903–1913.CrossRefGoogle Scholar
  9. 9.
    Jung, M.E. and Xu, Y., Cheminform Abstract, 1998, vol. 29, no. 16, pp. 235–238.Google Scholar
  10. 10.
    Daub, G.H., in Stable Isotopes. Proc. 3d Intern. Conference, Klein, E.R., Ed., New York: Academic, 1979, pp. 3–10.Google Scholar
  11. 11.
    Mosin, O.V., Skladnev, D.A., and Shvets, V.I., Biol. Bull., 1999, vol. 4, no. 6, pp. 403–413.Google Scholar
  12. 12.
    Huang, X., Yu, P., LeProust, E., and Gao, X., Nucleic Acids Res., 2006, vol. 25, no. 23, pp. 4758–4763.CrossRefGoogle Scholar
  13. 13.
    Kezar, H.S., Hutchison, T.L., Tyler, P.S., and Morris, P.E., J. Labell. Compounds Radiopharmac., 2001, vol. 45, no. 1, pp. 71–78.CrossRefGoogle Scholar
  14. 14.
    Miroshnikov, A.I., Esipov, R.S., Muravyova, T.I., Konstantinova, I.D., Fateev, I.V., and Mikhailopulo, I.A., Open Conf. Proc. J., 2010, vol. 1, pp. 98–102.CrossRefGoogle Scholar
  15. 15.
    Mosin, O.V., Skladnev, D.A., and Shvets, V.I., Biosci. Biotechnol. Biochem., 1999, vol. 62, no. 2, pp. 225–229.CrossRefGoogle Scholar
  16. 16.
    Mosin, O.V., Shvets, V.I., Skladnev, D.A., and Ignatov, I., Biofarmatsevt. Zh., 2012, vol. 4, no. 1, pp. 11–22.Google Scholar
  17. 17.
    Stable Isotopes in the Life Sciences, Crespi, H.L., Ed., Vienna: Internat. Atom. Energy Agency, 1977, pp. 111–121.Google Scholar
  18. 18.
    Den’ko, E.I., Usp. Sovrem. Biol., 1970, vol. 70, no. 4, pp. 41–49.PubMedGoogle Scholar
  19. 19.
    Eremin, V.A., Chekulaeva, L.N., Kharat’yan, E.F., and Ostrovskii, D.N., Mikrobiologiya, 1978, vol. 47, no. 4, pp. 629–636.Google Scholar
  20. 20.
    Lobyshev, V.N. and Kalinichenko, L.P., Izotopnye effekty D 2 O v biologicheskikh sistemakh (Isotopic Effects of D2O in Biological Systems), Moscow: Nauka, 1978.Google Scholar
  21. 21.
    Vertes, A., Physiological Effect of Heavy Water. Elements and Isotopes: Formation, Transformation, Distribution, Vienna: Kluwer, 2003.Google Scholar
  22. 22.
    Trotsenko, Y.A., Khmelenina, V.N., and Beschastny, A.P., in Microbial Growth on C1 Compounds. Proc. 8th Intern. Sympos., Lindstrom, M.E. and Tabita, F.R., Eds., Boston: Kluwer, 1995, pp. 24–26.Google Scholar
  23. 23.
    Karnaukhova, E.N., Reshetova, O.S., Semenov, S.Y., Skladnev, D.A., and Tsygankov, Y.D., Amino Acids, 1994, vol. 6, no. 2, pp. 165–176.CrossRefGoogle Scholar
  24. 24.
    Skladnev, D.A. and Tsygankov, Y.D., Convertion of Stable Isotope Labeled Methanol to Components of Bacterial Biomass. 6th Eur. Conf. of Biomass for Energy, Athens: Elsevier, 1991, pp. 234–235.Google Scholar
  25. 25.
    Mosin, O.V., Skladnev, D.A., Egorova, T.A., and Shvets, V.I., Biotekhnologiya, 1996, no. 3, pp. 3–12.Google Scholar
  26. 26.
    Skladnev, D.A., Mosin, O.V., Egorova, T.A., Eremin, S.V., and Shvets, V.I., Biotekhnologiya, 1996, no. 5, pp. 25–34.Google Scholar
  27. 27.
    Mosin, O.V., Skladnev, D.A., and Shvets, V.I., Biol. Bull., 1999, no. 4, pp. 1–10.Google Scholar
  28. 28.
    Mosin, O.V., Kazarinova, L.A., Preobrazhenskaya, K.A., Skladnev, D.A., Chebotaev, D.V., Yurkevich, A.M., and Shvets, V.I., Biotekhnologiya, 1996, no. 4, pp. 19–27.Google Scholar
  29. 29.
    Mosin, O.V., Karnaukhova, E.N., Pshenichnikova, A.B., Skladnev, D.A., and Akimova, O.L., Biotekhnologiya, 1993, no. 9, pp. 16–20.Google Scholar
  30. 30.
    Mosin, O.V., Skladnev, D.A., Egorova, T.A., and Shvets, V.I., Bioorg. Khim., 1996, vol. 22, nos. 10–11, pp. 856–869.Google Scholar
  31. 31.
    Zorina, A.V. and Babusenko, E.S., in Sovremennye problemy biotekhnologii mikroorganizmov. Tezisy dokl. molodykh uchenykh (Modern Problems of Microbial Biotechnology: Proc. Young Scientists), Riga: Zinatne, 1988, pp. 35–40.Google Scholar
  32. 32.
    Caprioli, R.M., Continuous-Flow Fast Atom Bombardment Mass Spectrometry, New York: Wiley, 1990.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • O. V. Mosin
    • 1
    Email author
  • V. I. Shvets
    • 1
  • D. A. Skladnev
    • 2
  • I. Ignatov
    • 3
  1. 1.Lomonosov State University of Fine Chemical TechnologyMoscowRussia
  2. 2.State Research Center of Genetics and Selection of Industrial MicroorganismsMoscowRussia
  3. 3.Scientific Research Center of Medical BiophysicsSofiaBulgaria

Personalised recommendations