Advertisement

Applied Biochemistry and Microbiology

, Volume 49, Issue 1, pp 73–78 | Cite as

Antiradical properties of oregano, thyme, and savory essential oils

  • E. S. AlinkinaEmail author
  • T. A. Misharina
  • L. D. Fatkullina
Article

Abstract

In model reactions with the stable free 2,2-diphenyl-1-picrylhydrazyl radical, the antiradical properties of essential oils of thyme (Thymus vulgare), oregano (Origanum vulgare), and savory (Satureja hortensis) that are similar in the qualitative composition, but differ in the quantitative content of the main components, were studied and compared with the properties of synthetic antioxidant ionol. The reaction rates of components of essential oils with the radical were almost identical for all essential oils and were twice the reaction rate of ionol. The antiradical efficiency values were close to each other for all essential oils and by an order of magnitude smaller than for ionol.

Keywords

DPPH Apply Biochemistry Thymol Carvacrol Antiradical Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kahl, R. and Kappus, H., Z. Lebensmitt. Unters. Forsc., 1993, vol. 196, no. 2, pp. 329–338.CrossRefGoogle Scholar
  2. 2.
    Cozzi, R., Ricordy, R., Aglitti, T., Gatta, V., Petricone, P., and De Salvia, R., Carcinogenesis, 1997, vol. 18, pp. 223–228.PubMedCrossRefGoogle Scholar
  3. 3.
    Murcia, M.A., Egea, I., Romojaro, F., Parras, P., Jimeanez, A.M., and Martianez-Tomea, M., J. Agric. Food Chem., 2004, vol. 52, no. 7, pp. 1872–1881.PubMedCrossRefGoogle Scholar
  4. 4.
    Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., and Bruni, R., Food Chem., 2005, vol. 91, pp. 621–632.CrossRefGoogle Scholar
  5. 5.
    Wei, A. and Shibamoto, T., J. Agric. Food Chem., 2007, vol. 55, no. 5, pp. 1737–1742.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhelyazkov, V.D., Cantrell, C.L., and Tekwani, B., J. Agric. Food Chem., 2008, vol. 56, no. 2, pp. 380–385.CrossRefGoogle Scholar
  7. 7.
    El-Ghorab, A., Shaaban, H.A., El-Nassry, K.F., and Shibamoto, T., J. Agric. Food Chem., 2008, vol. 56, no. 13, pp. 5021–5025.PubMedCrossRefGoogle Scholar
  8. 8.
    Misharina, T.A., Terenina, M.B., and Krikunova, N.I., Appl. Biochem. Microbiol., 2009, vol. 45, no. 6, pp. 710–716.CrossRefGoogle Scholar
  9. 9.
    Milos, M. and Makota, D., Food Chem., 2012, vol. 131, pp. 296–299.CrossRefGoogle Scholar
  10. 10.
    Miguel, M.G., Flavour Fragr. J., 2010, vol. 25, no. 1, pp. 291–312.CrossRefGoogle Scholar
  11. 11.
    Ultee, A. and Bennink, M.H.J., Moezelaar R, Appl. Environ. Microbiol., 2002, vol. 68, no. 4, pp. 1561–1568.PubMedCrossRefGoogle Scholar
  12. 12.
    Burlakova, E.B., Erokhin, V.N., Misharina, T.A., Fatkullina, L.D., Semenov, V.A., Terenina, M.B., Vorob’eva, A.K., and Goloshchapov, A.N., Biol. Bull., 2010, vol. 37, no. 6, pp. 612–618.CrossRefGoogle Scholar
  13. 13.
    Misharina, T.A., Burlakova, E.B., Fatkullina, L.D., Terenina, M.B., Vorob’eva, A.K., Erokhin, V.N., and Goloshchapov, A.N., Biomed. Khim., 2011, vol. 57, no. 6, pp. 604–614.PubMedGoogle Scholar
  14. 14.
    Burlakova, E.B., Misharina, T.A., Fatkullina, L.D., Terenina, M.B., Krikunova, N.I., Erokhin, V.N., and Vorob’eva, A.K., Dokl. Biochem. Biophys., 2011, vol. 437, no. 3, pp. 409–412.Google Scholar
  15. 15.
    Burlakova, E.B., Misharina, T.A., Vorob’eva, A.K., Alinkina, E.S., Fatkullina, L.D., Terenina, M.B., and Krikunova, N.I., Dokl. Biochem. Biophys., 2012, vol. 444, no. 6, pp. 676–679.Google Scholar
  16. 16.
    Ruberto, G. and Baratta, M.T., Food Chem., 2000, vol. 69, pp. 167–174.CrossRefGoogle Scholar
  17. 17.
    Mastelic, J., J. Agric. Food Chem., 2008, vol. 56, no. 14, pp. 3989–3996.PubMedCrossRefGoogle Scholar
  18. 18.
    Slamenova, D., Horvathova, E., and Wsolova, L., Neoplasma, 2008, vol. 55, no. 5, pp. 394–399.PubMedGoogle Scholar
  19. 19.
    Misharina, T.A., Alinkina, E.S., Fatkullina, L.D., Vorob’eva, A.K., Medvedeva, I.B., and Burlakova, E.B., Appl. Biochem. Microbiol., 2012, vol. 48, no. 1, pp. 117–123.CrossRefGoogle Scholar
  20. 20.
    Brand-Williams, W., Cuvelier, M.E., and Berset, C., Lebenm. Wiss. Technol., 1995, vol. 28, no. 1, pp. 25–30.Google Scholar
  21. 21.
    Sanchez-Moreno, C., Larrauri, J.A., and Saura-Calixto, F., J. Sci. Food Agric., 1998, vol. 76, no. 1, pp. 270–276.CrossRefGoogle Scholar
  22. 22.
    Huang, D., Ou, B., and Prior, R.L., J. Agric. Food Chem., 2005, vol. 53, no. 6, pp. 1841–1856.PubMedCrossRefGoogle Scholar
  23. 23.
    Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., and Bruni, R., J. Agric. Food Chem., 2005, vol. 91, no. 3, pp. 621–632.Google Scholar
  24. 24.
    Wang, H.F., Yih, K.H., and Huang, K.F., J. Food Drug Analys., 2010, vol. 18, no. 1, pp. 24–33.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. S. Alinkina
    • 1
    Email author
  • T. A. Misharina
    • 1
  • L. D. Fatkullina
    • 1
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations