Skip to main content

Isolation and functional characterization of lipase from the thermophilic alkali-tolerant bacterium Thermosyntropha lipolytica

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

As a result of sequencing the genome of the termophilic alkali-tolerant lipolytic bacterium Thermosyntropha lipolytica, the gene encoding a lipase secreted into the medium was identified. The recombinant enzyme was expressed in Escherichia coli. It was isolated, purified, and functionally characterized. The lipase exhibited hydrolytic activity toward para-nitrophenyl esters of various chain lengths, as well as triglycerides, including vegetable oils. The optimal reaction conditions were achieved at temperatures from 70 to 80°C and pH 8.0. This new thermostable lipase may be a promising biocatalyst for organic synthesis; it may find application in the food and detergent industry and biodiesel production.

This is a preview of subscription content, access via your institution.

References

  1. Gupta, R., Gupta, N., and Rathi, P., Appl. Microbiol. Biotechnol., 2004, vol. 64, no. 6, pp. 763–781.

    Article  PubMed  CAS  Google Scholar 

  2. Sarda, L. and Desnuelle, P., Biochim. Biophys. Acta, 1958, vol. 30, no. 3, pp. 513–521.

    Article  PubMed  CAS  Google Scholar 

  3. Ghosh, P.K., Saxena, R.K., Gupta, R., Yadav, R.P., and Davidson, W.S., Science Progress, 1996, vol. 79, no. 2, pp. 119–157.

    PubMed  CAS  Google Scholar 

  4. Jaeger, K.E. and Reetz, M.T., Trends Biotechnol., 1998, vol. 16, no. 9, pp. 396–403.

    Article  PubMed  CAS  Google Scholar 

  5. Bisen, P.S., Sanodiya, B.S., Thakur, G.S., Baghel, R.K., and Prasad, G.B., Biotechnol. Lett., 2010, vol. 32, no. 8, pp. 1019–1030.

    Article  PubMed  CAS  Google Scholar 

  6. Salameh, M. and Wiegel, J., Adv. Appl. Microbiol., 2007, vol. 61, pp. 253–283.

    Article  PubMed  CAS  Google Scholar 

  7. Svetlitshnyi, V., Rainey, F., and Wiegel, J., Int. J. Syst. Bacteriol., 1996, vol. 46, no. 8, pp. 1131–1137.

    Article  PubMed  CAS  Google Scholar 

  8. Salameh, M.A. and Wiegel, J., Appl. Environ. Microbiol., 2007, vol. 73, no. 23, pp. 7725–7731.

    Article  PubMed  CAS  Google Scholar 

  9. Salameh, M.A. and Wiegel, J., J. Ind. Microbiol. Biotechnol., 2009, vol. 36, no. 10, pp. 1281–1287.

    Article  PubMed  CAS  Google Scholar 

  10. Freier, D., Mothershed, C.P., and Wiegel, J., Appl. Environ. Microbiol., 1988, vol. 54, no. 1, pp. 204–211.

    PubMed  CAS  Google Scholar 

  11. Besemer, J. and Borodovsky, M., Nucleic Acids Res., 2005, vol. 33 (Web Server issue), pp. W451–W454.

    Article  PubMed  CAS  Google Scholar 

  12. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Nucleic Acids Res., 1997, vol. 25, no. 17, pp. 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  13. Gupta, R., Rathi, P., Gupta, N., and Bradoo, S., Biotechnol. Appl. Biochem., 2003, vol. 37, no. 1, pp. 63–71.

    Article  PubMed  CAS  Google Scholar 

  14. Rooney, D. and Weatherley, L.R., Process Biochem., 2001, vol. 36, no. 1, pp. 947–953.

    Article  CAS  Google Scholar 

  15. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., Dewell, S.B., Du, L., Fierro, J.M., Gomes, X.V., Godwin, B.C., He, W., Helgesen, S., Ho, C.H., Irzyk, G.P., Jando, S.C., Alenquer, M.L.I., Jarvie, T.P., Jirage, K.B., Kim, J.B., Knight, J.R., Lanza, J.R., Leamon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman, K.L., Lu, H., Makhijani, V.B., McDade, K.E., McKenna, M.P., Myers, E.W., Nickerson, E., Nobile, J.R., Plant, R., Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons, J.F., Simpson, J.W., Srinivasan, M., Tartaro, K.R., Tomasz, A., Vogt, K.A., Volkmer, G.A., Wang, S.H., Wang, Y., Weiner, M.P., Yu, P., Begley, R.F., and Rothberg, J.M., Nature, 2005, vol. 437, no. 7057, pp. 376–380.

    PubMed  CAS  Google Scholar 

  16. Blow, D., Nature, 1990, vol. 343, no. 6260, pp. 694–695.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, A.M.F., Somers, N.A., Kazlauskas, R.J., Brush, T.S., Zocher, F., Enzelberger, M.M., Bornscheuer, U.T., Horsman, G.P., Mezzetti, A., Schmidt-Dannert, C., and Schmid, R.D., Tetrahedron: Asymmetry, 2001, vol. 12, no. 4, pp. 545–556.

    Article  Google Scholar 

  18. Cavalcanti-Oliveira, E., Silva, P.R., Ramos, A.P., Aranda, D.A., and Freire, D.M., Enzyme Res., 2011, Article ID 618692.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ravin.

Additional information

Original Russian Text © V.M. Gumerov, A.V. Mardanov, P.M. Kolosov, N.V. Ravin, 2012, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2012, Vol. 48, No. 4, pp. 376–382.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gumerov, V.M., Mardanov, A.V., Kolosov, P.M. et al. Isolation and functional characterization of lipase from the thermophilic alkali-tolerant bacterium Thermosyntropha lipolytica . Appl Biochem Microbiol 48, 338–343 (2012). https://doi.org/10.1134/S0003683812040072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683812040072

Keywords

  • Lipase
  • Apply Biochemistry
  • Lipase Activity
  • Recombinant Lipase
  • Thermostable Lipase