Skip to main content
Log in

Catalytic properties of a nitrile hydratase immobilized on activated chitosan

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The catalytic properties of a nitrile hydratase, isolated from a strain of Rhodococcus ruber gt1 and immobilized by covalent cross-linking with chitosan activated with 0.1% benzoquinone solution, have been investigated. The kinetic parameters of acrylonitrile hydration catalyzed by immobilized nitrile hydratase and the enzyme in a solution have been determined. It is found that the immobilization does not lead to a decrease in the maximum reaction rate (V max), whereas the Michaelis constant (K M) is reduced by a factor of 2.4. The possibility of reusing an immobilized enzyme for 50 consecutive cycles of acrylonitrile transformation was shown, and the nitrile hydratase activity in the 50th cycle exceeded that in the first cycle by 3.5 times. It is shown that the effect of temperature on activity depended on the concentration of the enzyme, which confirms the dissociative nature of nitrile hydratase inactivation. It was found that immobilized nitrile hydratases remain active at pH 3.0–4.0, whereas the enzyme is inactivated in a solution under these conditions. The resulting biocatalyst can be effectively used to receive acrylamide from acrylonitrile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Kobayashi, M., Trends Biotechnol., 1992, vol. 10, pp. 402–408.

    Article  PubMed  CAS  Google Scholar 

  2. Kobayashi, M. and Shimizu, S., Curr. Opin. Chem. Biol., 2000, vol. 4, pp. 95–102.

    Article  PubMed  CAS  Google Scholar 

  3. Astaurova, O.B., Pogorelova, T.E., Fomina, O.R., Polyakova, I.N., and Yanenko, A.S., Biotekhnologiya, 1991, no. 5, pp. 10–14.

  4. Veiko, V.P., Yanenko, A.S, Alekseeva, M.G., Sintin, A.A., Gul’ko, L.B., Ratmanova, K.I., Ovcharova, I.V., Andreeva, L.B., Astaurova, O.B., Polyakova, I.N., Paukov, V.N., Voronin, S.N., and Debabov, V.G., Biotekhnologiya, 1995, no. 5–6, pp. 3–5.

  5. Astaurova, O.B., Leonova, T.E., Polyakova, K.N., Sineokaya, I.V., Gordeev, V.K., and Yanenko, A.S., Appl. Biochem. Microbiol., 2000, vol. 36, no. 1, pp. 15–18.

    Article  Google Scholar 

  6. Kobayashi, M. and Shimizu, S., Eur. J. Biochem., 1999, vol. 261, pp. 1–9.

    Article  PubMed  CAS  Google Scholar 

  7. Martinek, K. and Berezin, I.B., Usp. Khim., 1980, no. 5, pp. 737–770.

  8. Krajewska, B., Enzyme Microb. Technol., 2004, vol. 35, pp. 125–139.

    Article  Google Scholar 

  9. Kovaleva, T.A., Belenova, A.S., Slivkin, A.I., and Lapenko, V.L., Biotekhnologiya, 2010, no. 4, pp. 59–64.

  10. Betancor, L., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., Dellamora-Ortiz, G., Mateo, C., Fernández-Lafuente, R., and Guisán, J.M., Enzyme Microb. Technol., 2006, vol. 39, pp. 877–882.

    Article  CAS  Google Scholar 

  11. Kubác-, D., Kaplan, O., Elišáková, V., Pátek, M., Vejvoda, V., Slámová, K., Tóthová, A., Lemaire, M., Gallienne, E., Lutz-Wahl, S., Fischer, L., Kuzma, M., Pelantová, H., van Pelt, S., Bolte, J., Ken, V., and Martínková, L., J. Mol. Catal. B: Enzym., 2008, vol. 50, pp. 107–113.

    Article  Google Scholar 

  12. Maksimova, Yu.G., Demakov, V.A., Maksimov, A.Yu., Ovechkina, G.V., and Kovalenko, G.A., Appl. Biochem. Microbiol., 2010, vol. 46, no. 4, pp. 379–384.

    Article  CAS  Google Scholar 

  13. RF Patent No. 2223316, 2004.

  14. Prakticheskaya khimiya belka (Practical Protein Chemistry), Darbre, A.M., Ed., Moscow: Mir, 1989, pp. 297–298.

    Google Scholar 

  15. Bissvanger, Kh., Prakticheskaya enzimologiya (Practical Enzymology), Moscow: BINOM. Labor. Znanii, 2010.

    Google Scholar 

  16. Triven, M., Immobilizovannye fermenty (Immobilized Enzymes), Moscow: Mir, 1983.

    Google Scholar 

  17. Varfolomeev, S.D. and Gurevich, K.G., Biokinetika: Prakticheskii kurs (Biokinetics: A Practical Course), Moscow: FAIR-PRESS, 1999.

    Google Scholar 

  18. Fernández-Lafuente, R., Enzyme Microb. Technol., 2009, vol. 45, pp. 405–418.

    Article  Google Scholar 

  19. Sheldon, R.A., Biochem. Soc. Trans., 2007, vol. 35, pp. 1583–1587.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Maksimova.

Additional information

Original Russian Text © Yu.G. Maksimova, T.A. Rogozhnikova, G.V. Ovechkina, A.Yu. Maksimov, V.A. Demakov, 2012, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2012, Vol. 48, No. 5, pp. 484–489.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimova, Y.G., Rogozhnikova, T.A., Ovechkina, G.V. et al. Catalytic properties of a nitrile hydratase immobilized on activated chitosan. Appl Biochem Microbiol 48, 434–439 (2012). https://doi.org/10.1134/S0003683812030076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683812030076

Keywords