Skip to main content
Log in

Effect of partial pressure of CO2 on the production of thermostable α-amylase and neutral protease by Bacillus caldolyticus

Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Cite this article

Abstract

Controlling the concentration of dissolved oxygen is a standard feature in aerobic fermentation processes but the measurement of dissolved CO2 concentrations is often neglected in spite of its influence on the cellular metabolism. In this work room air and room air supplemented with 5 and 10% carbon dioxide were used for aeration during the cultivation of the thermophilic microorganism Bacillus caldolyticus (DSM 405) on starch to produce α-amylase (E.C. 3.2.1.1) and neutral protease (E.C. 3.4.24.27/28). The increased CO2 concentrations resulted in a 22% raise in activity of secreted α-amylase and a 43% raise in protease activity when compared with aeration with un-supplemented room air. There was no effect on the final biomass concentration. Furthermore, the lag-phase of fermentation was reduced by 30%, further increasing the productivity of α-amylase production. Determinations of dissolved CO2 in the culture broth were conducted both in situ with a probe as well as using exhaust gas analysis and both the methods of quantification showed good qualitative congruence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sivaramakrishnan, S., Gangadharam, D., Nampoothiri, K.M., Soccol, C.R., and Pandey, A., Food Technol. Biotechnol., 2006, vol. 44, no. 2, pp. 173–184.

    CAS  Google Scholar 

  2. Shivanand, P. and Jayaraman, G., Proc. Biochem., 2009, vol. 44, pp. 1088–1094.

    Article  CAS  Google Scholar 

  3. Schwab, K., Bader, J., Brokamp, C., Popović, M.K., Bajpai, R., and Berovic, M., New Biotech., 2009, vol. 26, nos. 1–2, pp. 68–74.

    Article  CAS  Google Scholar 

  4. Jones, R.P. and Greenfield, P.F., Enzyme Microb. Technol., 1982, vol. 4, pp. 210–223.

    Article  CAS  Google Scholar 

  5. Bäumchen, C., Knoll, A., Husemann, B., Seletzky, J., Maier, B., Dietrich, C., Amoabediny, G., and Büchs, J., J. Biotechnol., 2007, vol. 128, pp. 868–874.

    Article  PubMed  Google Scholar 

  6. Luca, S.F. and Brückner, H., Branntweinwirtschaft, 1994, vol. 2, pp. 174–181.

    Google Scholar 

  7. Nishikido, T., Izui, K., Iwatani, A., Katsuki, H., and Tanaka, S., J. Biochem., 1968, vol. 63, no. 4, pp. 532–541.

    PubMed  CAS  Google Scholar 

  8. McLean, D.J. and Purdie, E.F., J. Bacteriol., 1955, vol. 69, no. 2, pp. 204–209.

    PubMed  CAS  Google Scholar 

  9. Gandhi, A.P. and Kjaergaard, L., Biotechnol. Bioeng., 1975, vol. 17, pp. 1109–1118.

    Article  PubMed  CAS  Google Scholar 

  10. Zajic, J.E., Volesky, B., and Wellman A., Can. J. Microbiol., 1969, vol. 15, no. 10, pp. 1231–1236.

    Article  PubMed  CAS  Google Scholar 

  11. Narahara, H., Koyama, Y., Yoshida, T., Pichangkura, S., Ueda, R., and Taguchi, H., J. Ferment. Technol., 1982, vol. 60, no. 4, pp. 311–319.

    CAS  Google Scholar 

  12. Mudgett, R.E. and Bajracharya, R., J. Food Biochem., 1980, vol. 3, nos. 2–3, pp. 135–150.

    Article  CAS  Google Scholar 

  13. Manning, G.B. and Campbell, L.L., J. Biol. Chem., 1961, vol. 236, no. 11, pp. 2952–2957.

    PubMed  CAS  Google Scholar 

  14. Strydom, E., Mackie, R.I., and Woods, D.R., Appl. Microbiol. Biotechnol., 1986, vol. 24, no. 3, pp. 214–217.

    Article  CAS  Google Scholar 

  15. Royce, P.N.C. and Thornhill, N.F., AIChE J., 1991, vol. 37, no. 11, pp. 1680–1686.

    Article  CAS  Google Scholar 

  16. Gaffney, P.E., Appl. Microbiol., 1965, vol. 13, no. 4, pp. 507–510.

    PubMed  CAS  Google Scholar 

  17. Stretton, S. and Goodman, A.E., Antonie van Leeuwenhoek, 1998, vol. 73, no. 1, pp. 79–85.

    Article  PubMed  CAS  Google Scholar 

  18. Drysdale, M., Bourgogne, A., and Koehler, T.M., J. Bacteriol., 2005, vol. 187, no. 15, pp. 5108–5114.

    Article  PubMed  CAS  Google Scholar 

  19. Kaszab, I., Hogye, I., Komocsi, S., and Szilagyi, J., Proc. Biochem., 1981, vol. 16, no. 2, pp. 38–49.

    CAS  Google Scholar 

  20. Dahod, S.K., Biotechnol. Prog., 1993, vol. 9, no. 6, pp. 655–660.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Popović.

Additional information

Published in Russian in Prikladnaya Biokhimiya i Mikrobiologiya, 2012, Vol. 48, No. 2, pp. 206–211.

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bader, J., Skelac, L., Wewetzer, S. et al. Effect of partial pressure of CO2 on the production of thermostable α-amylase and neutral protease by Bacillus caldolyticus . Appl Biochem Microbiol 48, 182–187 (2012). https://doi.org/10.1134/S0003683812020032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683812020032

Keywords

Navigation