Skip to main content
Log in

Two-stage process of bacterial-chemical oxidation of refractory pyrite-arsenopyrite gold-bearing concentrate

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A technology for tank biooxidation of refractory gold-bearing concentrate under variable temperature conditions has been improved: the temperature of the first of two stages was changed from 30°C to 34–36°C. Gold in this concentrate is mainly associated with sulfide minerals: arsenopyrite and pyrite, which underlies a low gold recovery (16.68%) as a result of cyanidation. To resolve the problem, an association of mesophilic acidophilic chemolithotrophic microorganisms and moderately thermophilic bacteria of the Sulfobacillus genus were used for the concentrate oxidation. The composition of the used microbial association was studied; it was shown that it depends upon temperature: at 42°C, the population of the mesophilic thiobacteria decreased, whereas that of thermophilic sulfobacilli enhanced as compared to 36°C. The accepted scheme of the process ensures a high extent of gold recovery (94.6%) within a short space of time for biooxidation (96 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAS:

atomic absorption spectrometry

AE:

atomic emission spectrometry

BO:

biooxidation

ICP:

inductively coupled plasm

MSA:

mass spectrometric analysis

S:L:

hard fraction mass of pulp (ore concentrate) to liquid fraction mass of pulp (in this case it is the nutrient saline) ratio

References

  1. Van Aswegen, P.C., van Niekerk, J., and Olivier, W., in Bio-Mining, Rawlings, D.E. and Johnson, B.D., Eds., Berlin: Springer, 2007, pp. 1–35.

    Google Scholar 

  2. Xie, J.Y., Gao, J.C., Jin, S.B., and Han, X.G., in Proc. XXIV IMPC, Geng Jianyl, Ed., Bejing: Science Press, 2008, pp. 2737–2740.

    Google Scholar 

  3. Karavaiko, G.I., Smolskaja, L.S., Golyshyna, O.K., Jagovkina, M.A., and Egorova, E.Y., Fuel Proc. Technol., 1994, vol. 40, pp. 151–165.

    Article  CAS  Google Scholar 

  4. Tsaplina, I.A., Bogdanova, T.I., Sayakin, D.D., and Karavaiko, G.I., Mikrobiologiya, 1991, vol. 60, no. 6, pp. 34–40.

    CAS  Google Scholar 

  5. Zakharchuk, L.M., Tsaplina, I.A., Krasil'nikova, E.N., Bogdanova, T.I., and Karavaiko, G.I., Mikrobiologiya, 1994, vol. 63, no. 4, pp. 573–580.

    CAS  Google Scholar 

  6. Norris, P.R., Brierley, J.A., and Kelly, D.P., FEMS Microbiol. Letts., 1980, vol. 7, pp. 119–122.

    Article  CAS  Google Scholar 

  7. Melamud, V.S., Pivovarova, T.A., Kondrat'eva, T.F., and Karavaiko, G.I., Appl. Biochem. Microbiol., 1999, vol. 35, no. 2, pp. 182–189.

    CAS  Google Scholar 

  8. Sovmen, V.K. and Gus'kov, V.N., RF Patent No. 2256712 C22B11/00, 3/18 (2005).

  9. Zaulochnyi, P.A., Sedel'nikova, G.V., Savari, E.E., and Kim, D.Kh., in Tez. 5 Mosk. Mezhdunar. Kongr. “Biotekhnologiya: sostoyanie i perspektivy razvitiya” (Abstr. 5th Moscow Int. Congr. “Biotechnology: State and Development Prospects”), Moscow: ZAO Ekspobiokhim-tekhnologii, 2009, part 2, pp. 326–327.

    Google Scholar 

  10. Silverman, M.P. and Lundgren, D.C., J. Bacteriol., 1959, vol. 77, pp. 642–647.

    PubMed  CAS  Google Scholar 

  11. Reznikov, A.A., Mulikovskaya, E.P. and Sokolov, I.Yu., Metody analiza prirodnykh vod (Analytical Methods for Natural Waters), Moscow: Nedra, 1970.

    Google Scholar 

  12. Surovskaya, I.A., Titov, V.I., Brodskaya, V.M., Vasil'ev, P.I., Lipshits, B.M., and Elentukh, B.M., Tekhnicheskii analiz tsvetnoi metallurgii (Technical Analysis of Nonferrous Metallurgy), Moscow: Metallurgizdat, 1957.

    Google Scholar 

  13. Filippova, N.A., Fazovyi analiz rud i produktov ikh pererabotki (Phase Analysis of Ores and Their Processed Product), Moscow: Khimiya, 1975.

    Google Scholar 

  14. Zelenov, V.I., Metodika issledovaniya zolotosoderzhashchikh rud (Study Method for Gold Ores), Moscow: Nedra, 1978.

    Google Scholar 

  15. Karavaiko, G.I., Biogeotekhnologiya metallov. Prakticheskoe rukovodstvo (Biogeotechnology of Metals: A Practical Guide), Moscow: Tsentr mezhdunar. proektov GNKT, 1989.

    Google Scholar 

  16. Melamud, V.S. and Pivovarova, T.A., Appl. Biochem. Microbiol., 1998, vol. 34, no. 3, pp. 309–315.

    CAS  Google Scholar 

  17. Golyshina O.V., Pivovarova, T.A., Karavaiko, G.I., Kondrat'eva, T.F., Moore, E.R.B., Abraham, W., Lunsdorf, H., Timmis, K.N., Yakimov, M.M., and Golyshin, P.N., Int. J. System. Evol. Microbiol., 2000, vol. 50, pp. 997–1006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Bulaev.

Additional information

Original Russian Text © P.A. Zaulochnyi, A.G. Bulaev, E.E. Savari, T.A. Pivovarova, T.F. Kondratieva, G.V. Sedelnikova, 2011, published in Biotekhnologiya, 2011, No. 3, pp. 1–10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaulochnyi, P.A., Bulaev, A.G., Savari, E.E. et al. Two-stage process of bacterial-chemical oxidation of refractory pyrite-arsenopyrite gold-bearing concentrate. Appl Biochem Microbiol 47, 833–840 (2011). https://doi.org/10.1134/S0003683811090080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683811090080

Keywords

Navigation