Skip to main content
Log in

Biohydrometallurgical technology of copper recovery from a complex copper concentrate

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 hours, which allowed extraction of 40.6% of copper. At subsequent chemical leaching at 80°C during 7 hours with a solution of ferric sulfate obtained after biooxidation by an association of micro-organisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 hours). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea Ferroplasma acidiphilum, at 1.0 g/L h at 40°C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A flowsheet scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avtogennye protsessy v tsvetnoi metallurgii (Autogenous Processes in Ferrous Metallurgy), Mecheva, V.V., Bystrov, V.P., and Tarasov, A.V., Moscow: Metallurgiya, 1991.

    Google Scholar 

  2. Dreisinger, D., Hydrometallurgy, 2006, vol. 83, nos. 1–4, pp. 10–20.

    Article  CAS  Google Scholar 

  3. Watling, H.R., Hydrometallurgy, 2006, vol. 84, nos. 1–2, pp. 81–108.

    Article  CAS  Google Scholar 

  4. Peacey, J., Guo, X.J., and Robles, E., Trans. Nonferrous Met. Soc. China, 2005, vol. 14, no. 3, pp. 560–568.

    Google Scholar 

  5. Krylova, L.N., Panin, V.V., and Medvedev, A.S., Obogashchenie Rud, 2007, no. 4, pp. 21–24.

  6. van Answegen, P., BIOMINE,’ 93. Proc. Conf. Adelaide, Adelaide: Australian Mineral Foundation, 1993, Chap. 15.

    Google Scholar 

  7. Panin, V.V., Adamov, E.V., Krylova, L.N., Pivovarova, T.A., Voronin, D.Yu., and Karavaiko, G.I., Biohydrometallurgy. Proc. Int. Symp. (IBS 2003), Athens: National Technical University of Athens, 2003, pp. 85–90.

    Google Scholar 

  8. Batty, J.D. and Rorke, G.V., Hydrometallurgy, 2006, vol. 83, nos. 1–4, pp. 83–89.

    Article  CAS  Google Scholar 

  9. Brierley, C.L., Adv. Mater. Res., 2009, vos. 71–73, pp. 3–10.

    Article  Google Scholar 

  10. Fomchenko, N.V. and Biryukov, V.V., Appl. Biochem. Microbiol., 2009, vol. 45, no. 1, pp. 64–69.

    Article  CAS  Google Scholar 

  11. Smalley, N. and Davis, G., Miner. Eng., 2000, vol. 13, no. 6, pp. 599–608.

    Article  CAS  Google Scholar 

  12. Palencia, I., Romero, R., Mazuelos, A., and Carranza, F., Hydrometallurgy, 2002, vol. 66, nos. 1–3, pp. 85–93.

    Article  CAS  Google Scholar 

  13. Carranza, F., Iglesias, N., Mazuelos, A., Palencia, I., and Romero, R., Hydrometallurgy, 2004, vol. 71, nos. 3–4, pp. 413–420.

    Article  CAS  Google Scholar 

  14. Fomchenko, N.V., Biryukov, N.V., and Muravyov, M.I., Biotekhnologiya, 2007, no. 6, pp. 65–71.

  15. Hiroyoshi, N., Miki, H., Hirajima, T., and Tsunekawa, M., Hydrometallurgy, 2001, vol. 60, no. 3, pp. 185–197.

    Article  CAS  Google Scholar 

  16. Cordoba, E.M., Munoz, J.A., Blazquez, M.L., Gonzalez, F., and Ballester, A., Hydrometallurgy, 2008, vol. 93, nos. 3–4, pp. 88–96.

    Article  CAS  Google Scholar 

  17. Melamud, V.S. and Pivovarova, T.A., Microbiology, 1998, vol. 34, no. 3, pp. 309–315.

    CAS  Google Scholar 

  18. Silverman, M.P. and Lundgren, D.C., J. Bacteriol., 1959, vol. 77, no. 5, pp. 642–647.

    PubMed  CAS  Google Scholar 

  19. Reznikov, A.A., Mulikovskaya, E.P. and Sokolov, I.Yu., Metody analiza prirodnykh vod (Analytical Methods for Natural Waters), Moscow: Nedra, 1970.

    Google Scholar 

  20. Kinnunen, P.H., M., Salo V.L.A., Pehkonen S.O., Puhakka J.A, Biohydrometallurgy. Proc. Int. Symp. (IBS, 2003), Athens: National Technical University of Athens, 2003, pp. 193–201.

    Google Scholar 

  21. Daoud, J. and Karamanev, D., Miner. Eng., 2006, vol. 19, no. 9, pp. 960–967.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Muravyov.

Additional information

Original Russian Text © M.I. Muravyov, N.V. Fomchenko, T.F. Kondrat’eva, 2011, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2011, Vol. 47, No. 6, pp. 663–671.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muravyov, M.I., Fomchenko, N.V. & Kondrat’eva, T.F. Biohydrometallurgical technology of copper recovery from a complex copper concentrate. Appl Biochem Microbiol 47, 607–614 (2011). https://doi.org/10.1134/S0003683811060093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683811060093

Keywords

Navigation