Skip to main content
Log in

Kinetics of anaerobic biodegradation of glycerol by sulfate-reducing bacteria

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A kinetic model has been developed and kinetic parameters of anaerobic degradation of glycerol, an abundant by-product of biofuel manufacturing, by a consortium of sulfate reducing bacteria (SRB) in a closed system have been determined. The following main species of SRB has been identified in the consortium: Desulfovibrio baarsii, Desulfomicrobium sp., and Desufatomaculum sp. The proposed model included processes of glycerol degradation, sulfate reduction, and inhibition by metabolic products, as well as effects of pH and temperature. The suggested equation for the anaerobic glycerol degradation was based on Edward and Andrew’s equation. The following kinetic parameters of the anaerobic glycerol degradation were obtained for the initial glycerol concentration from 0.15 to 4 ml/l and sulfate concentration of 2760 mg/l at 22°C: maximum specific growth rate of SRB μmax = 0.56 day−1, economic coefficient of ashless biomass from glycerol of 0.08 mol SRB/mol COC, and yield of ashless biomass from sulfate of 0.020 mol SRB/mol SO4. It was shown that the optimum molar ratio of \( {{C_{Gl} } \mathord{\left/ {\vphantom {{C_{Gl} } {C_{SO_4 } }}} \right. \kern-\nulldelimiterspace} {C_{SO_4 } }} \) for SRB growth was 0.8. Initial boundary concentration of inhibition by undissociated hydrogen sulfide was 70 mg/l. Dependence of the specific growth rate of bacteria on the temperature was approximated by the Arrhenius equation in the temperature range of 20–30°C with the goodness of fit R2 = 0.99.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABM:

ashless biomass material

SRB:

sulfate reducing bacteria

COC:

chemical oxygen consumption

dCOC:

difference in COC values between the unfiltered and filtered probes

COCc :

chemical oxygen consumption corrected for the content of H2S in the probe

COCF :

chemical oxygen consumption of the filtered probe

ORP:

oxido-redox potential

Inoc:

inoculum

Gl:

glycerol

NM:

nutrient medium

VInoc :

inoculum volume

VNM :

nutrient medium volume

References

  1. Zainullin, Kh. and Smirnova, G. F., Khim. Tekhnol. Vody, 1980, no. 3, pp. 272–275.

  2. Plahl-Wabnegg, F. and Kroiss, H., gwf-Wasser/Abwasser, 1984, vol. 125, pp. 424–426.

    CAS  Google Scholar 

  3. Dinkel, W., Frechen, F., Dinkel, B., Kljavlin, A.M., and Smirnov, Y., Electroplat. Surface Treatm., 2004, no. 3, pp. 22–28.

  4. Hard, B.C., Friedrich, S., and Babel, W., Microbiol. Res., 1997, vol. 152, pp. 65–73.

    CAS  Google Scholar 

  5. El Bayoumy, M.A., Bewtra, J.K., Ali, H.I., and Biswas, N., Water Air Soil Pollut., 1999, vol. 112, pp. 67–84.

    Article  Google Scholar 

  6. Weijma, J., Stams, A.J.M., Hulshoff, P.L.W., and Lettinga, G., Biotechnol. Bioeng., 2000, vol. 67.

  7. Nagpal, S., Chuichulcherm, A., Peeva, L., and Livingston, A., Biotechnol. Bioeng., 2000, vol. 70, pp. 533–543.

    Article  CAS  PubMed  Google Scholar 

  8. Kaksonen, A.H., Franzmann, P.D., and Puhakka, J.A., Biodegradation, 2003, vol. 14, pp. 207–217.

    Article  CAS  PubMed  Google Scholar 

  9. Dijkman, H., Boonstra, J., Lawrence, R., and Buisman, J.N., in Proc. TMS 2002 Ann. Meeting, 2002.

  10. Van Houten, R.T., Yun, S.Y., and Lettinga, G., Biotechnol. Bioeng., 1997, vol. 55, no. 5, pp. 807–814.

    Article  PubMed  Google Scholar 

  11. Moosa, S., Nemati, M., and Harrison, S.T.L., Chem. Eng. Sci., 2002, vol. 57, pp. 2773–2780.

    Article  CAS  Google Scholar 

  12. Szewzyk, R., Untersuchungen zur Konkurrenz zwischen sulfatreduzierenden und garenden Bakterien um Gemeinsame Substrate: Diss. zur Erlengung des akademischen Grades. Konstanz, 1987.

  13. Odom, J.M., The Sulphate-Reducing Bacteria: Contemporary Perspectives, New York: Springer-Verlag, 1993.

    Google Scholar 

  14. Nanninga, H.J. and Gottschal, J.C., Appl. Environ. Microbiol., 1987, vol. 53, no. 4, pp. 802–809.

    CAS  PubMed  Google Scholar 

  15. Abw, V., Abwasserverordnung, Vom 17. 2004.

  16. Kalyuzhnyi, S.V. and Fragoso, L., Biotekhnologicheskaya sul’fatreduktsiya v UASV-Reaktore s ispol’zovaniem etanola v kachestve donora elektronov (Biotechnological Sulfate Reduction in UASV Fermenter using Ethanol as an Electron Donor), Moscow: Martinez, Mikrobiologiya, 1997.

    Google Scholar 

  17. Varfolomeev, S.D. and Kalyuzhnyi, S.V., Biotekhnologiya: Kineticheskie osnovy mikrobiologicheskikh protsessov: Uchebn. posobie (Biotechnology: Kinetic Principles of Microbiological Processes: A Manual), Moscow: Vysshaya Shkola, 1990.

    Google Scholar 

  18. Wolf, K.H., Kinetik in Der Bioverfahrenstechnik, Hamburg: Behr, 1991.

    Google Scholar 

  19. Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., and Vavilin, V.A., Anaerobic Digestion Model 1 (ADM1), IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes, London: IWA Publ., 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Dinkel.

Additional information

Original Russian Text © V.G. Dinkel, F.B. Frechen, A.V. Dinkel, Yu.Yu. Smirnov, S.V. Kalyuzhnyi, 2009, published in Biotekhnologiya, 2009, No. 5, pp. 54–62.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinkel, V.G., Frechen, F.B., Dinkel, A.V. et al. Kinetics of anaerobic biodegradation of glycerol by sulfate-reducing bacteria. Appl Biochem Microbiol 46, 712–718 (2010). https://doi.org/10.1134/S0003683810070069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683810070069

Key words

Navigation