Increase in glucoamylase productivity of Aspergillus awamori strain by combination of radiation mutagenesis and plasmid transformation methods

Abstract

Increase in the expression level of amylolytic genes activator protein encoded by amyR gene was shown to result in enhancement of glucoamylase productivity of A. awamori strain by 30%. However, the same effect equal to 30% increase can be achieved by introduction of extra copies of gla gene encoding glucoamylase. These two effects were not additive, which gave the possibility to suggest an additional limitation in the regulation mechanism of glucoamylase gene expression in A. awamori strain while introducing an additional copies of amyR and gla genes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    US Patent no. 5358864, 1994.

  2. 2.

    US Patent no. 5298405, 1994.

  3. 3.

    US Patent no. 4 966 850, 1990.

  4. 4.

    US Patent no. 5610048, 1997.

  5. 5.

    EU Patent no. 0420358A1, 1990.

  6. 6.

    WIRO Patent no. WO9855599A2, 1998.

  7. 7.

    Nikolaev, I.V., Bekker, O.B., Serebryanyi, V.A., Chulkin, A.M., and Vinetskii, Yu.P., Biotekhnologiya, 1999, no. 3, pp. 3–13.

  8. 8.

    Serebryanyi, V.A., Vavilova, E.A., Chulkin, A.M., and Vinetskii, Yu.P., Prikl. Biokhim. Mikrobiol., 2002, vol. 38, no. 5, pp. 495–501 [Appl. Biol. (Eng. Transl.), 2002, vol. 38, no. 5, pp. 420–426].

    Google Scholar 

  9. 9.

    Serebryanyi, V.A., Sinitsyna, O.A., Fedorova, E.A., Okunev, O.N., Bekkarevich, A.O., Sokolova, L.M., Vavilova, E.A., Vinetsky, Yu.P., and Sinitsyn, A.P., Prikl. Biokhim. Mikrobiol., 2006, vol. 42, no. 6, pp. 665–673 [Appl. Biol. (Eng. Transl.), 2006, vo. 42, no. 6, pp. 584–591].

    Google Scholar 

  10. 10.

    Vinetsky, Yu.P., Rozhkova, A.M., Chulkin, A.M., Satrutdinov, A.D., Sinitsyna, O.A., Fedorova, E.A., Bekkarevich, A.O., Okunev, O.N., and Sinitsyn, A.P., Biokhimiya, 2009, vol. 74, no. 8, pp. 1084–1090 [Biochemistry (Moscow), 2009, vol. 74, no. 8, pp. 882–887].

    Google Scholar 

  11. 11.

    Gomi, K., Akeno, T., Minetoki, T., Ozeki, K., Kumagai, C., and Iimura, Y., Biotechnol. Biochem., 2000, vol. 64, pp. 816–827.

    CAS  Article  Google Scholar 

  12. 12.

    Pel, H.J., de Winde, J.H., Archer, D.B., Dyer, P.S., Hofmann, G., Schaap, P.J., Turner, G., et al., Nat. Biotechnol., 2007, vol. 25, no. 2, pp. 221–231.

    Article  PubMed  Google Scholar 

  13. 13.

    Aleksenko, A.Y., Makarova, N.A., Nikolaev, I.V., and Clutterbuck, A.J., Curr. Genet., 1995, vol. 28, pp. 474–478.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Punt, P.J., Oliver, R.P., Dingemanse, M.A., Pouwels, P.H., and Hondel, C.A., Gene, 1987, vol. 56, pp. 117–124.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Aslanidis, C. and de Jong, J.P., Nucleic Acids Res., 1990, vol. 18, pp. 6069–6075.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Tilburn, J., Scazzocchio, C., Taylor, G.G., Zabicky-Zissman, J.H., Lockington, R.A., and Davies, R.W., Gene, 1983, vol. 26, pp. 205–221.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Semenova, M.V., Zorov, I.N., Sinitsyn, A.P., Okunev, O.N., Baryshnikova, L.M., and Tsurikova, N.V., Mikrobnye biokatalizatory dlya pererabatyvayushchikh otraslei APK (Microbial Biocatalysts for Processing Branches of Industry of APC), Polyakov, V.A. and Rimarev, L.V., Eds., Moscow: Pishchepromizdat, 2006.

    Google Scholar 

  18. 18.

    Nunberg, J.H., Meade, J.H., Cole, G., Lawyer, F.C., McCabe, P., Shweickart, V., Tal, R., Wittman, V.P., Flatgaard, J.E., and Innis, M.A., Mol. Cell. Biol., 1984, vol. 4, no. 11, pp. 2306–2315.

    CAS  PubMed  Google Scholar 

  19. 19.

    Boel, E., Hjort, I., Svensson, B., Norris, F., and Norris, K., EMBO J., 1984, vol. 3, no. 5, pp. 1097–1102.

    CAS  PubMed  Google Scholar 

  20. 20.

    Verdoes, J.C., Punt, P.J., Stouthamer, A.H., and Hondel, C.A.M.J.J., Gene, 1994, vol. 145, pp. 179–187.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Tsukagoshi, N., Kobayashi, T., and Kato, M., J. Gen. Appl. Microbiol., 2001, vol. 47, pp. 1–19.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Original Russian Text © Yu.P. Vinetsky, A.M. Rozhkova, A.S. Sereda, N.V. Tsurikova, A.K. Nurtaeva, M.V. Semenova, I.N. Zorov, A.P. Sinitsyn, 2010, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2010, Vol. 46, No. 6, pp. 685–692.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vinetsky, Y.P., Rozhkova, A.M., Sereda, A.S. et al. Increase in glucoamylase productivity of Aspergillus awamori strain by combination of radiation mutagenesis and plasmid transformation methods. Appl Biochem Microbiol 46, 633–640 (2010). https://doi.org/10.1134/S0003683810060128

Download citation

Keywords

  • Apply Biochemistry
  • Isomaltose
  • Plasmid Transformation
  • Glucoamylase Productivity
  • Proto Plasts