Skip to main content
Log in

Sorption and microbial degradation of glyphosate in soil suspensions

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Sorption and microbial destruction of glyphosate, the active agent of the herbicide Ground Bio, in suspensions of sod-podzol and gray forest soils has been studied. According to the adsorptive values (3560 and 8200 mg/kg, respectively) and the Freundlich constants (Kf, 15.6 and 18.7, respectively), these soils had a relatively high sorption capacity as related to the herbicide. Sorbed glyphosate is represented by extractable and bound (non-extractable) fractions. After long-term incubation of sterile suspensions, the ratio of these fractions reached 2: 1 for sod-podzol soil and 1: 1 for gray forest soil. Inoculation of a native suspension of sod-podzol soil with cells of a selected strain-degrader Ochrobactum anthropi GPK 3 resulted in a 25.4% decrease in the total glyphosate content (dissolved and extractable), whereas in a noninoculated suspension, the loss did not exceed 5.5%. The potential for the use of a selected bacterial strain in the glyphosate destruction processes in soil systems is demonstrated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Rueppel, M., Brightwell, B., Schaefer, J., and Marcel, J., J. Agric. Food Chem., 1977, vol. 25, no. 3, pp. 517–528.

    Article  CAS  PubMed  Google Scholar 

  2. Torstensson, L., in The Herbicide Glyphosate, Grossbarol, E. and Atkinson, D., Eds., London: Butterworths, 1985, pp. 137–149.

    Google Scholar 

  3. Veiga, F., Zapata, J.M., Marcos, M.L.F., and Alvarez, E., Total Env., 2001, vol. 271, nos. 1–3, pp. 135–144.

    Article  CAS  Google Scholar 

  4. Eberbach, P., Pestic. Sci., 1998, vol. 52, no. 3, pp. 229–240.

    Article  CAS  Google Scholar 

  5. Eberbach, P.L., J. Agric. Food Chem., 1999, vol. 47, no. 6, pp. 2459–2467.

    Article  CAS  PubMed  Google Scholar 

  6. Glass, R., J. Agric. Food Chem., 1987, vol. 35, no. 4, pp. 497–500.

    Article  CAS  Google Scholar 

  7. Schnurer, Y., Persson, P., Nilsson, M., Nordgren, A., and Giesler, R., Environ. Sci. Technol., 2006, vol. 40, no. 13, pp. 4145–4150.

    Article  PubMed  Google Scholar 

  8. Zablotowicz, R.M. and Reddy, K.N., Crop Protection, 2007, vol. 26, no. 3, pp. 370–376.

    Article  CAS  Google Scholar 

  9. Balthazor, T.M. and Hallas, L.E., Appl. Environ. Microbiol., 1986, vol. 51, no. 2, pp. 432–434.

    CAS  PubMed  Google Scholar 

  10. Dick, R.E. and Quinn, J.P., Appl. Microbiol. Biotecnol., 1995, vol. 43, no. 3, pp. 545–550.

    Article  CAS  Google Scholar 

  11. Ermakova, I.T., Shushkova, T.V, and Leontievsky, A.A., Mikrobiologiya, 2008, vol. 77, no. 5, pp. 689–695.

    CAS  Google Scholar 

  12. Sorensen, S.R., Schultz, A., Jacobsen, O.S., and Aamand, J., Environ. Pollution, 2006, vol. 141, no. 1, pp. 184–194.

    Article  CAS  Google Scholar 

  13. Borjesson, E. and Torstensson, L., J. Chromatogr., A, 2000, vol. 886, pp. 207–216.

    Article  CAS  Google Scholar 

  14. De Jonge, H. and de Jonge, L., Chemosphere, 1999, vol. 39, no. 5, pp. 753–763.

    Article  Google Scholar 

  15. Matu, L. and Varriuso, E., Chemosrhere, 2005, vol. 61, no. 6, pp. 844–855.

    Google Scholar 

  16. Vereecken, H., Pest. Manag. Sci., 2005, vol. 61, no. 12, pp. 1139–1151.

    Article  CAS  PubMed  Google Scholar 

  17. Stenrod, M., Charnay, M.P., Benoit, P., and Eklo, O.M., Soil Biol. Biochem., 2006, vol. 38, no. 5, pp. 962–970.

    Article  CAS  Google Scholar 

  18. Newton, M., Horner, L.M., Cowell, J.E., White, D.E., and Cole, E.C., J. Agric. Food Chem., 1994, vol. 42, no. 8, pp. 1795–1802.

    Article  CAS  Google Scholar 

  19. Strange-Hansen, R., Holm, P.E., Jacobsen, O.S., and Jacobsen, C.S., Pest. Manag. Sci., 2004, vol. 60, no. 6, pp. 570–578.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Shushkova.

Additional information

Original Russian Text © T.V. Shushkova, G.K. Vasilieva, I.T. Ermakova, A.A. Leontievsky, 2009, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2009, Vol. 45, No. 6, pp. 664–669.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shushkova, T.V., Vasilieva, G.K., Ermakova, I.T. et al. Sorption and microbial degradation of glyphosate in soil suspensions. Appl Biochem Microbiol 45, 599–603 (2009). https://doi.org/10.1134/S0003683809060040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683809060040

Keywords