Skip to main content
Log in

The regulation of peroxisomal matrix enzymes (alcohol oxidase and catalase) formation by the product of the gene Mth1 in methylotrophic yeast Pichia methanolica

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Two independent mutant strains of methylotrophic yeast Pichia methanolica (mth1 arg1 and mth2 arg4) from the initial line 616 (ade1 ade5) were investigated. The mutant strains possessed defects in genes MTH1 and MTH2 which resulted in the inability to assimilate methanol as a sole carbon source and the increased activity of alcohol oxidase (AO). The function of the AUG2 gene encoding one of the subunits of AO and CTA1, a probable homolog of peroxisomal catalase of Saccharomyces cereviseae, was investigated by analyses of the molecular forms of isoenzymes. It was shown that optimal conditions for the expression of the AUG2 gene on a medium supplemented with 3% of methanol leads to an increasing synthesis of peroxisomal catalase. The mutant mth1 possessed a dominant formation of AO isoform with electrophoretic mobility which is typical for isogenic form 9, the product of the AUG2 gene, and a decreased level of peroxisomal catalase. The restoration of growth of four spontaneous revertants of the mutant mth1 (Rmth1) on the methanol containing medium was accompanied by an increase in activity of AO isogenic form 9 and peroxisomal catalase. The obtained results confirmed the functional continuity of the structural gene AUG2 in mutant mth1. The correlation of activity of peroxisomal catalase and AO isogenic form 1 in different conditions evidenced the existence of common regulatory elements for genes AUG2 and CTA1 in methilotrophic yeast Pichia methanolica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sibirny, A.A., Titorenko, V.I., Efremov, B.D., and Tolstorukov, I.I., Yeast, 1987, vol. 3, pp. 233–241.

    Article  Google Scholar 

  2. Raymond, C.K., in Gene Expression Systems, Using Nature of the Art of Expression, Fernandez, J. M. and Hoeffler, J. P., Eds., New York: Academic, 1999, pp. 193–209.

    Google Scholar 

  3. Johnson, M.A., Waterham, H.R., Ksheminska, G.P., Fayura, L.R., Cereghino, J.L., Stasyk, O.V., Veenhuis, M., Kulachkovsky, A.R., Sibirny, A.A., and Cregg, J.M., Genetics, 1999, vol. 151, pp. 1379–1391.

    PubMed  CAS  Google Scholar 

  4. Nakagawa, T., Miyaji, T., Yurimoto, H., Sakai, Y., Kato, N., and Tomizuka, N., Appl. Environ. Microbiol., 2000, vol. 66, pp. 4253–4257.

    Article  PubMed  CAS  Google Scholar 

  5. Nakagawa, T., Yamada, K., Fujimura, S., Ito, T., Miyaji, T., and Tomizuka, N., Microbiology, 2005, vol. 151, pp. 2047–2052.

    Article  PubMed  CAS  Google Scholar 

  6. Sahm, H. and Wagner, F., Eur. J. Biochem., 1973, vol. 36, pp. 250–256.

    Article  PubMed  CAS  Google Scholar 

  7. Veenhuis, M., van Dijen, J.P., and Harder, W., Adv. Microb. Physiol., 1983, vol. 24, pp. 1–82.

    Article  PubMed  CAS  Google Scholar 

  8. Sahm, H., Adv. Biochem. Eng., 1997, vol. 6, pp. 77–81.

    Google Scholar 

  9. Raymond, C.K., Bukowski, T., Holderman, S.D., Ching, A.F., Vanaja, E., and Stamm, M.R., Yeast, 1998, vol. 14, pp. 11–23.

    Article  PubMed  CAS  Google Scholar 

  10. Nakagawa, T., Uchimura, T., and Komagata, K., J. Ferment. Bioeng., 1996, vol. 81, pp. 498–503.

    Article  CAS  Google Scholar 

  11. Nakagawa, T., Mukaiyama, H., Yurimoto, H., Sakai, Y., and Kato, N., Yeast, 1999, vol. 15, pp. 1223–1230.

    Article  PubMed  CAS  Google Scholar 

  12. Gruzman, M.B., Titorenko, V.I., Lusta, K.A., and Trotsenko, Yu.A., Biokhimiya, 1996, vol. 61, pp. 2131–2139.

    CAS  Google Scholar 

  13. Nakagawa, T., Mizumura, T., Mukaiyama, H., Miyaji, T., Yurimoto, H., Kato, N., Sakai, Y., and Tomizuka, N., Yeast, 2002, vol. 12, pp. 1067–1073.

    Article  Google Scholar 

  14. Roggenkamp, R., Janowicz, Z., Stanikowski, B., and Hollenberg, C.P., Mol. Gen. Genet., 1984, vol. 194, pp. 489–497.

    Article  PubMed  CAS  Google Scholar 

  15. Harder, W. and Veenhuis, M., The Yeast, London: Academic, 1989, vol. 3, pp. 289–316.

    Google Scholar 

  16. Melik-Adamyan, W.R., Barynin, V.V., and Vagin, A.A., J. Mol. Biol., 1986, vol. 188, pp. 63–72.

    Article  PubMed  CAS  Google Scholar 

  17. Cohen, G., Rapatz, W., and Ruis, H., Eur. J. Biochem., 1988, vol. 176, pp. 159–163.

    Article  PubMed  CAS  Google Scholar 

  18. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O., Mol. Biol. Cell, 2000, vol. 11, pp. 4241–4257.

    PubMed  CAS  Google Scholar 

  19. Bissinger, P.H., Wieser, R., Hamilton, B., and Ruis, H., Mol. Cell. Biol., 1989, vol. 9, pp. 1309–1315.

    PubMed  CAS  Google Scholar 

  20. Motruk, O.M., Tolstorukov, I.I., and Sibirnyi, A.A., Biotekhnologiya, 1989, vol. 5, no. 6, pp. 692–698.

    CAS  Google Scholar 

  21. Tolstorukov, I.I., Dutova, T.A., Benevolenskii, S.V., and Soom, Ya.O., Genetika, 1977, vol. 13, pp. 322–326.

    CAS  Google Scholar 

  22. Sibirnyi, A.A., Titorenko, V.I., Benevolenskii, S.V., and Tolstorukov, I.I., Genetika, 1986, no. 12, pp. 584–592.

  23. Shol’ts, K.F. and Ostrovskii, D.N., Metody sovremennoi biokhimii (Methods of Modern Biochemistry), Moscow: Nauka, 1975.

    Google Scholar 

  24. Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.

    Article  PubMed  CAS  Google Scholar 

  25. Lledias, F., Rangel, P., and Hansberg, W., J. Biol. Chem., 1998, vol. 273, pp. 10630–10637.

    Article  PubMed  CAS  Google Scholar 

  26. Egli, T., van Dijken, J.P., Veenhuis, M., Harder, W., and Fietcher, A., Arch. Microbiol., 1980, vol. 124, pp. 115–121.

    Article  CAS  Google Scholar 

  27. Egli, T., Lindley, N.D., and Quayle, J.R., J. Gen. Microbiol., 1983, vol. 129, p. 1269.

    CAS  Google Scholar 

  28. De Coning, W., Glesson, M.A.G., Harder, W., and Dijkhuiren, C., Arch. Microbiol., 1987, vol. 147, pp. 375–382.

    Article  Google Scholar 

  29. Nakagawa, T., Sakai, Y., Mukaiyama, H., Mizumura, T., Miyaji, T., Yurimoto, H., Kato, N., and Tomizuka, N., J. Biosci. Bioeng, 2001, vol. 91, pp. 225–227.

    Article  PubMed  CAS  Google Scholar 

  30. Leonovich, O.A., Pogutse, O.M., Serkova, N.N., Dutova, T.A., Tolstorukov, I.I., and Rabinovich, Ya.M., Biotekhnologiya, 2000, no. 3, pp. 9–15.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Isakova.

Additional information

Original Russian Text © O.A. Leonovich, Yu.A. Kurales, T.A. Dutova, E.P. Isakova, Y.I. Deryabina, Ya.M. Rabinovich, 2009, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2009, Vol. 45, No. 2, pp. 156–162.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonovich, O.A., Kurales, Y.A., Dutova, T.A. et al. The regulation of peroxisomal matrix enzymes (alcohol oxidase and catalase) formation by the product of the gene Mth1 in methylotrophic yeast Pichia methanolica . Appl Biochem Microbiol 45, 137–142 (2009). https://doi.org/10.1134/S0003683809020045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683809020045

Keywords

Navigation