Skip to main content
Log in

Interaction of proteinases secreted by the fungal plant pathogen Rhizoctonia solani with natural proteinase inhibitors produced by plants

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The fungal plant pathogen Rhizoctonia solani Kuhn. grown in a medium containing thermostable potato tuber proteins produced proteinases active at moderately alkaline pH values. Electrophoretic analysis in polyacrylamide gel with SDS and copolymerized gelatin showed that the extracellular proteinase complex contained four components that differed in molecular weight. Studies on the action of the exoenzymes on various synthetic substrates indicated that the culture liquid of R. solani contained mainly trypsin-like proteinases. The exoproteinase activity was virtually completely suppressed by trypsin inhibitor proteins isolated from potato tubers and seeds of various legume species. The results suggest that the extracellular proteinases produced by R. solani play a significant role in attacking plant tissue, and natural inhibitors contribute to the protection of Solanaceae and Leguminosae from this fungal pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanyuk, V.G., in Materialy mezhdunarodnoi nauchnoprakticheskoi konferentsii “Aktual’nye problemy zashchity kartofelya, plodovykh i ovoshchnykh kul’tur ot boleznei, vreditelei i somyakov” (Proceedings of the Science and Practical Conference “Relevant Problems of Defense of Potato, Fruit, and Vegetable Crops from Diseases, Plant Pests, and Weeds”), Minsk: Institut kartofelevodstva NAN Belarusi, 2005, pp. 268–279.

    Google Scholar 

  2. D’yakov, Yu.T., Ozeretskovskaya, O.L., Dzhavakhiya, V.G., and Bagirova, S.F., Obshchaya i molekulyarnaya fitopatologiya (General and Molecular Phytopathology), Moscow: Obshchestvo fitopatologov, 2001.

    Google Scholar 

  3. Kartofel’ (Potato) Batsanov, N.S., Ed., Moscow: Kolos, 1970.

    Google Scholar 

  4. Gvozdeva, E.L., Ievleva, E.V., Gerasimova, N.G., Ozeretskovskaya, O.L., and Valueva, T.A., Prikl. Biokhim. Mikrobiol., 2004, vol. 40, no. 2, pp. 194–200.

    PubMed  CAS  Google Scholar 

  5. Ievleva, E.V., Revina, T.A., Kudryavtseva, N.N., Sof’in, A.V., and Valueva, T.A., Prikl. Biokhim. Mikrobiol., 2006, vol. 42, no. 3, pp. 338–344.

    PubMed  CAS  Google Scholar 

  6. Ball, A.M., Ashby, A.M., Daniels, M.J., Ingram, D.S., and Johnstone, K., Physiol. Mol. Plant Pathol., 1991, vol. 38, no. 2, pp. 147–161.

    Google Scholar 

  7. Paris, R. and Lamattina, L., Eur. J. Plant Pathol, 1999, vol. 105, no. 8, pp. 753–760.

    Article  CAS  Google Scholar 

  8. Valueva, T.A. and Mosolov, V.V., Usp. Biol. Khim., 2002, vol. 42, pp. 193–216.

    CAS  Google Scholar 

  9. Peng, J.H. and Black, L.L., Phytopathology, 1976, vol. 66, no. 5, pp. 958–963.

    CAS  Google Scholar 

  10. Kladnitskaya, G.V., Valueva, T.A., Ermolova, N.V., Il’inskaya, L.I., Gerasimova, N.G., and Mosolov, V.V., Fiziol. Rast., 1996, vol. 43, no. 5, pp. 701–706.

    Google Scholar 

  11. Valueva, T.A., Kladnitskaya, G.V., Il’inskaya, L.I., Gerasimova, N.G., Ozeretskovskaya, O.L., and Mosolov, V.V., Bioorg. Khim., 1998, vol. 24, no. 5, pp. 346–349.

    CAS  Google Scholar 

  12. Valueva, T.A., Revina, T.A., Gvozdeva, E.L., Gerasimova, N.G., Il’inskaya, L.I., and Ozeretskovskaya, O.L., Prikl. Biokhim. Mikrobiol., 2001, vol. 37, no. 5, pp. 601–606.

    PubMed  CAS  Google Scholar 

  13. Mosolov, V.V., Loginova, M.D., Fedurkina, N.V., and Benken, I.I., Plant Sci. Lett., 1976, vol. 7, no. 1, pp. 77–80.

    Article  CAS  Google Scholar 

  14. Benken, I.I., Mosolov, V.V., and Fedurkina, N.V., Mikol. Fitopatol., 1976, vol. 10, no. 3, pp. 198–201.

    Google Scholar 

  15. Revina, T.A., Valueva, T.A., Ermolova, N.V., Kladnitskaya, G.V., and Mosolov, V.V., Biokhimiya, 1995, vol. 60, no. 11, pp. 1844–1852.

    CAS  Google Scholar 

  16. Revina, T.A., Valueva, T.A., Romashkin, V.I., and Mosolov, V.V., Biokhimiya, 1987, vol. 52, no. 4, pp. 683–689.

    CAS  Google Scholar 

  17. Mosolov, V.V., Kolosova, G.V., Valueva, T.A., and Dronova, L.A., Biokhimiya, 1982, vol. 47, no. 5, pp. 787–802.

    Google Scholar 

  18. Kunitz, M., J. Gen. Physiol., 1947, vol. 30, no. 4, pp. 291–310.

    Article  CAS  Google Scholar 

  19. Sgardieri, V.G., Gupte, S.M., Kramer, D.E., and Whitaker, J.R., J. Biol. Chem., 1964, vol. 239, no. 7, pp. 2170–2177.

    Google Scholar 

  20. Erlanger, D.F., Kokowsky, N., and Cohen, W., Arch. Biochem. Biophys., 1961, vol. 95, no. 2, pp. 271–278.

    Article  PubMed  CAS  Google Scholar 

  21. Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  PubMed  CAS  Google Scholar 

  22. Heussen, C. and Dowdle, E.B., Anal. Biochem., 1980, vol. 102, no. 1, pp. 196–202.

    Article  PubMed  CAS  Google Scholar 

  23. Appenroth, K.J. and Augsten, H., Biochem. Physiol. Pflanz, 1987, vol. 182, no. 1, pp. 85–89.

    CAS  Google Scholar 

  24. Ryan, C.A., Annu. Rev. Phytopathol., 1990, vol. 28, pp. 425–449.

    Article  CAS  Google Scholar 

  25. Richardson, M., Phytochemistry, 1977, vol. 16, no. 1, pp. 159–169.

    Article  CAS  Google Scholar 

  26. Valueva, T.A. and Mosolov, V.V., Biokhimiya, 2004, vol. 69, no. 11, pp. 1600–1606.

    Google Scholar 

  27. Melville, J.C. and Ryan, C.A., J. Biol. Chem., 1972, vol. 217, no. 11, pp. 3445–3453.

    Google Scholar 

  28. Bryant, J., Green, T.R., Gurusaddaiah, T., and Ryan, C.A., Biochemistry, 1976, vol. 15, no. 17, pp. 3418–3423.

    Article  PubMed  CAS  Google Scholar 

  29. Hines, M.E., Osuala, C.I., and Nielsen, S.S., J. Agric. Food Chem., 1991, vol. 39, no. 10, pp. 1515–1520.

    Article  CAS  Google Scholar 

  30. Ishikawa, A., Ohta, S., Matsuoka, K., Hattori, T., and Nakamura, K., Plant Cell Physiol., 1994, vol. 35, no. 2, pp. 303–312.

    PubMed  CAS  Google Scholar 

  31. Valueva, T.A., Revina, T.A., and Mosolov, V.V., Biokhimiya, 1997, vol. 62, no. 12, pp. 1600–1608.

    Google Scholar 

  32. Revina, T.A., Speranskaya, A.S., Kladnitskaya, G.V., Shevelev, A.B., and Valueva, T.A., Biokhimiya, 2004, vol. 69, no. 10, pp. 1345–1352.

    Google Scholar 

  33. Mosolov, V.V. and Valueva, T.A., Prikl. Biokhim. Mikrobiol., 2005, vol. 41, no. 3, pp. 261–282.

    PubMed  CAS  Google Scholar 

  34. Mosolov, V.V., Valueva, T.A., and Kolosova, G.V., Biokhimiya, 1982, vol. 47, no. 12, pp. 2015–2021.

    CAS  Google Scholar 

  35. Kortt, A.A., Biochim. Biophys. Acta, 1980, vol. 624, no. 2, pp. 371–382.

    Google Scholar 

  36. Kortt, A.A. and Jermyn, M.A., Eur. J. Biochem., 1981, vol. 115, no. 2, pp. 551–557.

    PubMed  CAS  Google Scholar 

  37. Kladnitskaya, G.V., Valueva, T.A., Domash, V.I., Novikova, L.M., and Mosolov, V.V., Prikl. Biokhim. Mikrobiol., 1994, vol. 30, no. 1, pp. 21–28.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.L. Gvozdeva, A.V. Volotskaya, A.V. Sof’in, N.N. Kudryavtseva, T.A. Revina, TA. Valueva, 2006, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2006, Vol. 42, No. 5, pp. 572–579.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gvozdeva, E.L., Volotskaya, A.V., Sof’in, A.V. et al. Interaction of proteinases secreted by the fungal plant pathogen Rhizoctonia solani with natural proteinase inhibitors produced by plants. Appl Biochem Microbiol 42, 502–507 (2006). https://doi.org/10.1134/S0003683806050103

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683806050103

Keywords

Navigation