Skip to main content
Log in

Structure and Temporal Variability of the Northern Branch of the Antarctic Circumpolar Current in the Drake Passage

  • MARINE PHYSICS
  • Published:
Oceanology Aims and scope

Abstract

The Antarctic Circumpolar Current plays a key role in the circulation of the Southern Ocean and affects redistribution of heat by the ocean on a global scale. The study of the dynamics and structure of this current becomes especially relevant in a changing climate. The current is well manifested based on the satellite altimetry data, which makes it possible to study the variability of its structure in time and space on different scales. The methods for determining the position of individual fronts of the Antarctic Circumpolar Current based on satellite altimetry data becomes most important in solving these tasks. In this paper, we compare different approaches to the detection of fronts. To do this, the structure of the northernmost branch of the Antarctic Circumpolar Current, the Subantarctic Front, and its spatial and temporal variability have been considered based on the satellite altimetry data from 1993 to 2020 and also on the results of a hydrographic section made onboard the R/V Akademik Mstislav Keldysh across the northern part of the Drake Passage in February 2020. To assess the dynamics of the front, a section of the TOPEX/Poseidon, Jason-1,2,3 satellite altimeter track from Tierra del Fuego to the south, 350 km long, was selected. Criteria are presented for determining the position of the northern and main branches of the Subantarctic Front based on the satellite altimetry data. A long-term trend of shifting the position of the fronts with respect to the previously accepted levels of absolute dynamic topography has been found. It has been established that the accuracy of determining the position of fronts from fixed values of dynamic topography can decrease in time, in particular, due to the variations in the mean sea level. A statistically significant long-term trend in sea level rise in the region of the Subantarctic Front at a rate of 4 mm/year for the northern branch and 2.5 mm/year for the main branch was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. A. Burkov, “Antarctic jets,” Okeanologiya 34, 2, 169–177 (1994).

    Google Scholar 

  2. M. N. Koshlyakov, D. S. Savchenko, and R. Yu. Tarakanov, “Energy of the jets of the Antarctic circumpolar current and of their eddies in the surface layer of the Southern Ocean,” Oceanology 59 (3), 293–304 (2019). https://doi.org/10.1134/S0001437019030093

    Article  Google Scholar 

  3. M. N. Koshlyakov, I. A. Repina, D. S. Savchenko, et al., “Structure and variability of mesoscale perturbations of ocean currents in the Drake Passage and Scotia Sea,” Oceanology 59 (2), 171–181 (2019). https://doi.org/10.1134/S0001437019020103

    Article  Google Scholar 

  4. R. Yu. Tarakanov and A. M. Gritsenko, “The structure of fronts in the area south of Africa according to the data of the SR02 section in December 2009 and satellite altimetry,” Issled. Rossii: Elektron. Nauchn. Zh. (2010). https://doi.org/10.7868/S0030157414030137

    Book  Google Scholar 

  5. R. Yu. Tarakanov and A. M. Gritsenko, “Fine-jet structure of the Antarctic Circumpolar Current south of Africa,” Oceanology 54 (6), 677–687 (2014). https://doi.org/10.1134/S0001437014050130

    Article  Google Scholar 

  6. R. Yu. Tarakanov and A. M. Gritsenko, “Jets of the Antarctic Circumpolar Current in the Drake Passage according to the data of hydrophysical sections in 2010 and 2011,” Sovrem. Probl. Termogidromekh. Okeana 167–169 (2017). https://doi.org/10.29006/978-5-9901449-3-4-2017-1-167-169

  7. R. Yu. Tarakanov and A. M. Gritsenko, “Jets of the Antarctic Circumpolar Current in the Drake Passage based on hydrographic section data,” Oceanology 58 (4), 541–555 (2018). https://doi.org/10.1134/S0001437018040100

    Article  Google Scholar 

  8. D. A. Churin, “Jet structure of the Antarctic Circumpolar Current in the Scotia Sea according to satellite altimetry data and ship observations in 2000 and 2005,” Tr. AtlantNIRO 2 (1), 61–69 (2018).

    Google Scholar 

  9. C. Artana, J. M. Lellouche, Y. H. Park, et al., “Fronts of the Malvinas Current System: Surface and subsurface expressions revealed by satellite altimetry, Argo floats, and Mercator operational model outputs,” J. Geophys. Res.: Oceans 123 (8), 5261–5285 (2018). https://doi.org/10.1029/2018JC013887

    Article  Google Scholar 

  10. N. Barré, C. Provost, A. Renault, et al., “Fronts, meanders and eddies in Drake Passage during the ANT-XXIII/3 cruise in January-February 2006: A satellite perspective,” Deep-Sea Res. II Top. Studies Oceanogr. 58 (25–26), 2533–2554 (2011). https://doi.org/10.1016/j.dsr2.2011.01.003

    Article  Google Scholar 

  11. C. C. Chapman, M. A. Lea, A. Meyer, et al., “Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate,” Nat. Clim. Change 10, 210–219 (2020). https://doi.org/10.1038/s41558-020-0705-4

    Article  Google Scholar 

  12. D. B. Chelton, M. G. Schlax, D. L. Witter, et al., “Geosat altimeter observations of the surface circulation of the Southern Ocean,” J. Geophys. Res.: Oceans 95 (C10), 17877–17903 (1990). https://doi.org/10.1029/JC095iC10p17877

    Article  Google Scholar 

  13. G. E. R. Deacon, “The hydrology of the Southern Ocean,” Discovery Rep. 15, 3–122 (1937).

    Google Scholar 

  14. N. Ducet, P. Y. Le Traon, and G. Reverdin, “Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2,” J. Geophys. Res.: Oceans 105 (C8), 19477–19498 (2000). https://doi.org/10.1029/2000JC900063

    Article  Google Scholar 

  15. G. D. Egbert and S. Erofeeva, “Efficient inverse modeling of barotropic ocean tides,” J. Atmos. Ocean Tech. 19, 183–204 (2002). https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

    Article  Google Scholar 

  16. M. Fang and J. Zhang, “Basin-scale features of global sea level trends revealed by altimeter data from 1993 to 2013,” J. Oceanogr. 71 (3), 297–310 (2015). https://doi.org/10.1007/s10872-015-0289-1

    Article  Google Scholar 

  17. R. Ferrari, C. Artana, M. Saracen, et al., “Satellite altimetry and current-meter velocities in the Malvinas Current at 41 S: Comparisons and modes of variations,” J. Geophys. Res.: Oceans 122 (12), 9572–9590 (2017). https://doi.org/10.1002/2017JC013340

    Article  Google Scholar 

  18. R. Ferrari, C. Provost, A. Renault, et al., “Circulation in Drake Passage revisited using new current time series and satellite altimetry: 1. The Yaghan Basin,” J. Geophys. Res.: Oceans 117 (C12) (2012). https://doi.org/10.1029/2012JC008264

  19. Y. L. Firing, T. K. Chereskin, and M. R. Mazloff, “Vertical structure and transport of the Antarctic Circumpolar Current in Drake Passage from direct velocity observations,” Journal of Geophysical Research: Oceans 116 (C8) (2011). https://doi.org/10.1029/2011JC006999

  20. D. I. Frey, V. A. Krechik, A. S. Gordey, et al., “Austral summer circulation in the Bransfield Strait based on SADCP measurements and satellite altimetry,” Front. Mar. Sci. 10, 1111541 (2023). https://doi.org/10.3389/fmars.2023.1111541

    Article  Google Scholar 

  21. D. I. Frey, A. R. Piola, V. A. Krechik, et al., “Direct measurements of the Malvinas Current velocity structure,” J. Geophys. Res.: Oceans 126 (4), e2020JC016727 (2021). https://doi.org/10.1029/2020JC016727

  22. D. I. Frey, A. R. Piola, and E. G. Morozov, “Convergence of the Malvinas Current branches near 44°S,” Deep-Sea Res. Part I: Oceanogr. Res. Pap. 104023 (2023). https://doi.org/10.1016/j.dsr.2023.104023

  23. P. Gaube, C. Barceló, D. J. Jr. McGillicuddy, et al., “The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic,” PloS One 12 (3), e0172839 (2017). https://doi.org/10.1371/journal.pone.0172839

    Article  Google Scholar 

  24. GEBCO Compilation Group (2021) GEBCO 2021 Grid. https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f

  25. S. T. Gille, “Meridional displacement of the Antarctic circumpolar current,” Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 372 (2019), 20130273 (2014).

  26. Y. S. Kim and A. H. Orsi, “On the variability of Antarctic Circumpolar Current fronts inferred from 1992–2011 altimetry,” J. Phys. Oceanogr. 44 (12), 3054–3071 (2014). https://doi.org/10.1175/JPO-D-13-0217.1

    Article  Google Scholar 

  27. Y. D. Lenn, T. K. Chereskin, and J. Sprintall, “Improving estimates of the Antarctic Circumpolar Current streamlines in Drake Passage,” J. Phys. Oceanogr. 38 (5), 1000–1010 (2008). https://doi.org/10.1175/2007JPO3834.1

    Article  Google Scholar 

  28. R. P. Matano and E. D. Palma, “On the upwelling of downwelling currents,” J. Phys. Oceanogr. 38 (11), 2482–2500 (2008). https://doi.org/10.1175/2008JPO3783.1

    Article  Google Scholar 

  29. E. G. Morozov, D. I. Frey, D. V. Fofanov, et al., “The extreme northern jet of the Antarctic Circumpolar Current,” Russ. J. Earth Sci. 20 (5), 4 (2020). https://doi.org/10.2205/2020ES000717

    Article  Google Scholar 

  30. E. G. Morozov, D. I. Frey, V. A. Krechik, et al., “Multidisciplinary observations across an eddy dipole in the interaction zone between subtropical and subantarctic waters in the Southwest Atlantic,” Water 14 (17), 2701 (2022). https://doi.org/10.3390/w14172701

    Article  Google Scholar 

  31. E. G. Morozov, V. A. Spiridonov, T. N. Molodtsova, et al., “Investigations of the ecosystem in the Atlantic sector of Antarctica (cruise 79 of the R/V Akademik Mstislav Keldysh),” Oceanology 60 (5), 721–723 (2020). https://doi.org/10.1134/S0001437020050161

    Article  Google Scholar 

  32. E. G. Morozov, R. Yu. Tarakanov, I. Ansorge, and S. Swart, “Jets and transport of the Antarctic Circumpolar Current in the Drake Passage,” Fundam. Applied Hydrophys. 7 (3), 23–28 (2014).

    Google Scholar 

  33. E. G. Morozov, R. Y. Tarakanov, T. A. Demidova, et al., “Velocity and transport of the Falkland Current at 46°S,” Russ. J. Earth Sci. 16 (6), 1–4 (2016). https://doi.org/10.2205/2016ES000588

    Article  Google Scholar 

  34. W. D. Nowlin Jr. and M. Clifford, “The kinematic and thermohaline zonation of the Antarctic Circumpolar Current at Drake Passage,” J. Mar. Res. 40, 481–507 (1982).

    Google Scholar 

  35. A. H. Orsi, T. Whitworth III, and W. D. Nowlin Jr., “On the meridional extent and fronts of the Antarctic Circumpolar Current,” Deep-Sea Res. Part I. Oceanogr. Res. Pap. 42 (5), 641–673 (1995). https://doi.org/10.1016/0967-0637(95)00021-W

    Article  Google Scholar 

  36. C. Provost, A. Renault, N. Barré, et al., “Two repeat crossings of Drake Passage in austral summer 2006: Short-term variations and evidence for considerable ventilation of intermediate and deep waters,” Deep-Sea Res. Part II: Top. Studies Oceanogr. 58 (25–26), 2555–2571 (2011). https://doi.org/10.1016/j.dsr2.2011.06.009

    Article  Google Scholar 

  37. P. A. Salyuk, S. A. Mosharov, D. I. Frey, et al., “Physical and biology features of the waters in the outer Patagonian Shelf and the Malvinas Current,” Water 14 (23) (2022). https://doi.org/10.3390/w14233879

  38. J. R. Shi, L. D. Talley, S.-P. Xie, et al., “Effects of buoyancy and wind forcing on Southern Ocean climate change,” J. Clim. 33 (23), 10003–10020 (2020). https://doi.org/10.1175/JCLI-D-19-0877.1

    Article  Google Scholar 

  39. H. A. Sievers and W. J. Emery, “Variability of the Antarctic Polar frontal zone in the Drake Passage—summer 1976–1977,” J. Geophys. Res.: Oceans 83 (C6), 3010–3022 (1978).

    Article  Google Scholar 

  40. H. A. Sievers and W. D. Nowlin Jr., “The stratification and water masses at Drake Passage,” J. Geophys. Res.: Oceans 89 (C6), 10489–10514 (1984). https://doi.org/10.1029/JC089iC06p10489

    Article  Google Scholar 

  41. S. Sokolov and S. R. Rintoul, “Structure of Southern Ocean fronts at 140°E,” J. Mar. Syst. 37 (1–3), 151–184 (2002). https://doi.org/10.1016/S0924-7963(02)00200-2

    Article  Google Scholar 

  42. S. Sokolov and S. R. Rintoul, “Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths,” J. Geophys. Res.: Oceans 114 (C11) (2009). https://doi.org/10.1029/2008JC005108

  43. S. Sokolov and S. R. Rintoul, “Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 2. Variability and relationship to sea surface height,” J. Geophys. Res.: Oceans 114 (C11) (2009). https://doi.org/10.1029/2008JC005248

  44. R. Yu. Tarakanov, “Long-term linear meridional shift of the jet structure of the Antarctic Circumpolar Current south of Africa,” Oceanology 61, 815–829 (2021). https://doi.org/10.1134/S000143702106031X

    Article  Google Scholar 

  45. H. Venables, M. P. Meredith, A. Atkinson, et al., “Fronts and habitat zones in the Scotia Sea,” Deep-Sea Res. Part II: Top. Studies Oceanogr. 59, 14–24 (2012). https://doi.org/10.1016/j.dsr2.2011.08.012

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the crew of the R/V Akademik Mstislav Keldysh for their assistance in the expeditionary work.

The along-track altimetry data are available at https://resources.marine.copernicus.eu/product-detail/ SEALEVEL_GLO_PHY_L3_MY_008_062 (access data November 29, 2021). Altimetry on the regular grid is available at https://resources.marine.copernicus.eu/product-detail/ SEALEVEL_GLO_PHY_L4_MY_008_047 (access data May 20, 2022).

Funding

The study was carried out within state task FMWE-2021-0002 (ship expenses and collection of field data) and was supported by the Russian Science Foundation, grant no. 22-77-10004 (processing of field observation data and analysis of satellite altimetry).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ostroumova.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostroumova, S.A., Drozd, I.D. & Frey, D.I. Structure and Temporal Variability of the Northern Branch of the Antarctic Circumpolar Current in the Drake Passage. Oceanology 63, 440–452 (2023). https://doi.org/10.1134/S000143702304015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143702304015X

Keywords:

Navigation