Skip to main content
Log in

Internal Waves near Half Moon Island, South Shetland Islands

  • MARINE PHYSICS
  • Published:
Oceanology Aims and scope

Abstract

Internal waves based on measurements on cruise 87 of the R/V Akademik Mstislav Keldysh in the Bransfield Strait near Half Moon Island and calculations using a numerical model are analyzed. The measurements were carried out on January 25, 2022 over 4 h using a line of temperature and pressure sensors along with CTD probe measurements. Temperature fluctuations based on the data from these sensors showed that the amplitude of internal waves was close to 5 m, sometimes reaching 15 m. Irregular semidiurnal tides predominate in the study area based on the calculation results using the TPXO9 global tidal model. Numerical calculations of the internal wave parameters show that the baroclinic tide generated on a steep slope breaks up into higher frequency waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Ya. I. Bakueva and I. E. Kozlov, “Characteristics of short-period internal waves in the Southern Ocean according to Sentinel 1A/B satellite SAR data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 19 (2), 201–211 (2022). https://doi.org/10.21046/2070-7401-2022-19-2-201-211

    Article  Google Scholar 

  2. V. I. Valsenko, “Non-linear model for the generation of baroclinic tides over extensive inhomogeneities of the seabed relief,” Phys. Oceanogr. 3, 417–424 (1992).

    Google Scholar 

  3. W. Ashcroft, “Crustal structure of the South Shetland Islands and Bransfield strait,” British Antarctic Survey, No. 66, 43 (1972).

    Google Scholar 

  4. T. H. Bell, Jr., “Topographically generated internal waves in the open ocean,” J. Geophys. Res.: Oceans 80 (3), 320–327 (1975). https://doi.org/10.1029/JC080i003p00320

    Article  Google Scholar 

  5. F. Boyce, “Internal waves in the Straits of Gibraltar,” Deep Sea Res. 22 (9), 597–610 (1975). https://doi.org/10.1016/0011-7471(75)90047-9

    Article  Google Scholar 

  6. G. Egbert, A. Bennett, and M. Foreman, “TOPEX/POSEIDON tides estimated using a global inverse model,” J. Geophys. Res.: Oceans 99 (C12), 24821–24852 (1994). https://doi.org/10.1029/94JC01894

    Article  Google Scholar 

  7. G. Egbert and S. Erofeeva, “Efficient inverse modeling of barotropic ocean tides,” J. Atmos. Ocean. Technol. 19 (2), 183–204 (2002). https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

    Article  Google Scholar 

  8. D. Frey, V. Krechik, E. Morozov, et al., “Water exchange between deep basins of the Bransfield Strait,” Water 14, 3193 (2022). https://doi.org/10.3390/w14203193

    Article  Google Scholar 

  9. M. García, C. G. Castro, A. F. Ríos, et al., “Water masses and distribution of physico-chemical properties in the Western Bransfield Strait and Gerlache Strait during austral summer 1995/96,” Deep Sea Res. II 49 (4–5), 585–602 (2002). https://doi.org/10.1016/S0967-0645(01)00113-8

    Article  Google Scholar 

  10. C. Garrett and W. Munk, “Internal waves in the ocean,” Annu. Rev. Fluid Mech. 11 (1), 339–369 (1979).

    Article  Google Scholar 

  11. C. Garrett and W. Munk, “Space-time scales of internal waves: A progress report,” J. Geophys. Res.: Oceans 80 (3), 291–297 (1975). https://doi.org/10.1029/JC080i003p00291

    Article  Google Scholar 

  12. T. Gerkema and J. Zimmerman, “An introduction to internal waves,” in Lecture Notes (Royal NIOZ, Texel, 2008).

    Google Scholar 

  13. A. Gordon and W. D. Nowlin, Jr., “The basin waters of the Bransfield Strait,” J. Phys. Oceanogr. 8 (2), 258–264 (1978). https://doi.org/10.1175/1520-0485(1978)008<0258:TBWOTB>2.0.CO;2

    Article  Google Scholar 

  14. K. Helfrich and W. Melville, “Long nonlinear internal waves,” Annu. Rev. Fluid Mech. 38 (1), 395–425 (2006). https://doi.org/10.1146/annurev.fluid.38.050304.092129

    Article  Google Scholar 

  15. O. Holm-Hansen and B. Mitchell, “Spatial and temporal distribution of phytoplankton and primary production in the western Bransfield Strait region,” Deep Sea Res. I 38 (8–9), 961–980 (1991). https://doi.org/10.1016/0198-0149(91)90092-T

    Article  Google Scholar 

  16. E. Khimchenko, D. Frey, and E. Morozov, “Tidal internal waves in the Bransfield Strait, Antarctica,” Russ. J. Earth Sci. 20 (2), 2 (2020). https://doi.org/10.2205/2020ES000711

    Article  Google Scholar 

  17. G. P. Klinkhammer, C. S. Chin, R. A. Keller, et al., “Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica,” Earth Planet. Sci. Lett. 193 (3–4), 395–407 (2001). https://doi.org/10.1016/S0012-821X(01)00536-2

    Article  Google Scholar 

  18. I. Kozlov, E. Zubkova, and V. Kudryavtsev, “Internal solitary waves in the Laptev Sea: First results of spaceborne SAR observations,” IEEE Geosci. Remote Sens. Lett. 14 (11), 2047–2051 (2017). https://doi.org/10.1109/LGRS.2017.2749681

    Article  Google Scholar 

  19. L. Lawver, R. Keller, M. Fisk, and J. Strelin, “Bransfield Strait, Antarctic Peninsula active extension behind a dead arc,” in Backarc Basins (Springer, Boston, 1995), pp. 315–342.

    Google Scholar 

  20. A. Marchenko, E. Morozov, I. Kozlov, and D. Frey, “High-amplitude internal waves southeast of Spitsbergen,” Cont. Shelf Res. 227, 104523 (2021). https://doi.org/10.1016/j.csr.2021.104523

    Article  Google Scholar 

  21. E. Morozov, “Semidiurnal internal wave global field,” Deep Sea Res. I: Oceanogr. Res. Pap. 42 (1), 135–148 (1995). https://doi.org/10.1016/0967-0637(95)92886-c

    Article  Google Scholar 

  22. E. Morozov, I. Kozlov, S. Shchuka, and D. Frey. “Internal tide in the Kara Gates Strait,” Oceanology 57 (1), 8–18 (2017). https://doi.org/10.1134/S0001437017010106

    Article  Google Scholar 

  23. E. Morozov, A. Marchenko, K. Filchuk, et al., “Sea ice evolution and internal wave generation due to a tidal jet in a frozen sea,” Appl. Ocean Res. 87, 179–191 (2019). https://doi.org/10.1016/j.apor.2019.03.024

    Article  Google Scholar 

  24. E. Morozov, V. Paka, and V. Bakhanov, “Strong internal tides in the Kara Gates Strait,” Geophys. Res. Lett. 35, L16603 (2008).

    Article  Google Scholar 

  25. E. Morozov, G. Parrilla-Barrera, M. Velarde, and A. Scherbinin, “The Straits of Gibraltar and Kara Gates: A comparison of internal tides,” Oceanol. Acta. 26 (3), 231–241 (2003). https://doi.org/10.1016/S0399-1784(03)00023-9

    Article  Google Scholar 

  26. E. G. Morozov and S. V. Pisarev, “Internal tides at the Arctic latitudes (numerical experiments),” Oceanology 42 (2), 153–161 (2002).

    Google Scholar 

  27. R. Mukhametyanov, D. Frey, and E. Morozov, “Currents in the Bransfield Strait based on geostrophic calculations and data of instrumental measurements,” Izv. Atmos. Ocean. Phys. 58 (5), 500–506 (2022).

    Article  Google Scholar 

  28. P. Niller, A. Amos, and J. Hu, “Water masses and 200 m relative geostrophic circulation in the western Bransfield Strait region,” Deep Sea Res. I 38 (8–9), 943–959 (1991). https://doi.org/10.1016/0198-0149(91)90091-S

    Article  Google Scholar 

  29. A. Polukhin, E. Morozov, P. Tishchenko, et al., “Water structure in the Bransfield Strait (Antarctica) in January 2020: Hydrophysical, optical and hydrochemical features,” Oceanology 61 (5), 632–644 (2021). https://doi.org/10.1134/S0001437021050106

    Article  Google Scholar 

  30. D. Savidge and J. Amft, “Circulation on the West Antarctic Peninsula derived from 6 years of shipboard ADCP transects,” Deep Sea Res. I 56 (10), 1633–1655 (2009). https://doi.org/10.1016/j.dsr.2009.05.011

    Article  Google Scholar 

  31. R. Susanto, L. Mitnik, and Q. Zheng, “Ocean internal waves observed in the Lombok Strait,” Oceanography 18 (4), 80–87 (2005).

    Article  Google Scholar 

  32. G. Wefer, G. Fischer, D. Fuetterer, and R. Gersonde, “Seasonal particle flux in the Bransfield Strait, Antarctica,” Deep Sea Res. I 35 (6), 891–898 (1988). https://doi.org/10.1016/0198-0149(88)90066-0

    Article  Google Scholar 

Download references

Funding

The study was carried out within state task FMWE-2022-0001 (ship expenses and equipment preparation) and with the support of the Russian Science Foundation, grant no. 22-77-10004 (analysis of field data and modeling of internal waves).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Morozov.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekhova, O.S., Smirnova, D.A., Morozov, E.G. et al. Internal Waves near Half Moon Island, South Shetland Islands. Oceanology 63, 486–496 (2023). https://doi.org/10.1134/S0001437023040100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437023040100

Keywords:

Navigation