Skip to main content
Log in

Estimating Climate Trends of the Powell Basin’s Hydrophysical Characteristics

  • MARINE PHYSICS
  • Published:
Oceanology Aims and scope

Abstract—The trend of the dynamic state of Powell Basin waters in the Weddell Sea is estimated based on hydrological data from cruise 79 of the R/V Akademik Mstislav Keldysh (January 16–February 6, 2020) and World Ocean Database-2018 data for January–February 1975–2020. At each node of a quarter-degree grid, a linear trend was plotted for the calculated values of the maximum buoyancy frequency and maximum amplitude of the vertical internal wave velocity component. It is shown that the southwestern and northwestern parts of the Powell Basin differ significantly in their hydrophysical characteristics. In the northwest, the linear trend of the maximum buoyancy frequency is negative, while the depth trends of the maximum values of the Väisälä–Brunt frequency and amplitude of the vertical velocity component are positive. In the southwestern part of the basin, the opposite is true: the trend of the maximum buoyancy frequency is positive, while the trends in the depths of the maximum values of the Väisälä–Brunt frequency and the amplitude of the vertical velocity component are negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. E. Bukatov and N. M. Solovei, “Evaluation of the density field vertical structure and the characteristics of internal waves relation with large-scale atmospheric circulation in the Peruvian and Benguela upwelling areas,” GEOmedia, No. 2, 485–490 (2017).

    Google Scholar 

  2. V. A. Gritsenko and V. P. Krasitskii, “On a method for the computation of dispersion relations and eigen functions for internal waves in the ocean from the field measurement data,” Okeanologiya, No. 4, 545–549 (1982).

    Google Scholar 

  3. A. V. Zimin, D. A. Romanenkov, I. E. Kozlov, B. Chapron, A. A. Rodionov, O. A. Atadjanova, A. G. Myasoedov, and F. Collard, “Short-period internal waves in the white sea: Operational remote sensing experiment in summer 2012,” Issled. Zemli Kosmosa, No. 3, 41–55 (2014) https://doi.org/10.7868/S0205961414030087

    Article  Google Scholar 

  4. A. V. Klepikov and N. N. Antipov, “Formation and distribution of water masses on the shelf and continental slope around Antarctica,” Led i Sneg 54 (4), 81–94 (2014). https://doi.org/10.15356/2076-6734-2014-4-81-94

    Article  Google Scholar 

  5. I. E. Kozlov, V. N. Kudryavtsev, E. V. Zubkova, et al., “Characteristics of short-period internal waves in the Kara Sea inferred from satellite SAR data,” Izv., Atmos. Ocean. Phys. 51 (9), 1073–1087 (2015). https://doi.org/10.1134/S0001433815090121

    Article  Google Scholar 

  6. O. Yu. Krasnoborodko, “Internal waves in Bransfield Strait in February 2020 and their impact on krill distribution,” Trudy AtlantNIRO 5 (2), 81−89 (2021).

    Google Scholar 

  7. P. V. Lobovikov, O. E. Kurkina, A. A. Kurkin, and M. V. Kokoulina, “Transformation of first mode breather of internal waves above the bottom step in a three-layer fluid,” Izv., Atmos. Ocean. Phys. 55 (6), 650–661 (2019). https://doi.org/10.1134/S0001433819060094

    Article  Google Scholar 

  8. Yu. Z. Miropol’skii, Dynamics of Internal Gravitational Waves at the Ocean (Leningrad, Gidrometeoizdat, 1981) [in Russian].

    Google Scholar 

  9. E. G. Morozov, V. A. Spiridonov, T. N. Molodtsova, et al., “Investigations of the ecosystem in the Atlantic sector of Antarctica (cruise 79 of the R/V Akademik Mstislav Keldysh),” Oceanology 60 (5), 721–723 (2020). https://doi.org/10.1134/S0001437020050161

    Article  Google Scholar 

  10. E. G. Morozov, D. I. Frey, A. A. Polukhin, et al., “Mesoscale variability of the ocean in the northern part of the Weddell Sea,” Oceanology 60 (5), 573–588 (2020). https://doi.org/10.1134/S0001437020050173

    Article  Google Scholar 

  11. V. A. Spiridonov, A. K. Zalota, V. A. Yakovenko, and K. M. Gorbatenko, “Composition of population and transport of juveniles of Antarctic krill in Powell Basin region (northwestern Weddell Sea) in January 2020,” Trudy VNIRO 18, 33–51 (2020). https://doi.org/10.36038/2307-3497-2020-181-33-51

    Article  Google Scholar 

  12. An Atlas of Internal Solitary-like Waves and their Properties, 2nd ed. (2004). https://www.internalwaveatlas. com/Atlas2_index.html. Accessed September 1, 2022.

  13. A. A. Bukatov, N. M. Solovei, and E. A. Pavlenko, “Free short-period internal waves in the Arctic seas of Russia,” Phys. Oceanogr. 28 (6), 599–611 (2021). https://doi.org/10.22449/1573-160X-2021-6-599-611

    Article  Google Scholar 

  14. E. Fahrbach and A. Beckmann, “Weddell Sea circulation,” in Encyclopedia of Ocean Sciences (Elsevier, Amsterdam, 2001), Vol. 6, pp. 3201–3209.

    Google Scholar 

  15. A. E. Gill, “Circulation and bottom water production in the Weddell Sea,” Deep-Sea Res. 20 (2), 111–140 (1973).

    Google Scholar 

  16. G. Eagles and R. A. Livermore, “Opening history of Powell Basin, Antarctic Peninsula,” Mar. Geol. 185, 195–205 (2002). https://doi.org/10.1016/S0025-3227(02)00191-3

    Article  Google Scholar 

  17. V. Klemas, “Remote sensing of ocean internal waves: An overview,” J. Coast. Res. 28 (3), 540–546 (2012). https://doi.org/10.2112/JCOASTRES-D-11-00156.1

    Article  Google Scholar 

  18. R. D. Mueller and R. Timmermann, “Weddell Sea circulation,” in Encyclopedia of Ocean Sciences, 3rd ed. (2018), pp. 1–7. https://doi.org/10.1016/B978-0-12-409548-9.11631-8

  19. Special report on the ocean and cryosphere in a changing climate. https://www.ipcc.ch/srocc/. Accessed October 1, 2022.

Download references

Funding

The study was carried out with a state task (topic no. FNNN-2022-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Solovei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukatov, A.A., Solovei, N.M. & Pavlenko, E.A. Estimating Climate Trends of the Powell Basin’s Hydrophysical Characteristics. Oceanology 63, 464–471 (2023). https://doi.org/10.1134/S0001437023040021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437023040021

Keywords:

Navigation