Skip to main content

Advertisement

Log in

Bioindication of Bottom Sediments of the Gulf of Finland by the Composition of Meiobenthos in Combination with Biotesting and Chemical Analysis

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

The question of the possibility of using meiobenthos to monitor the state of bottom sediments in the Baltic Sea, where bottom macrofauna are unstable due to hypoxia, is of interest. The parameters of meiobenthos and the physicochemical characteristics of bottom sediments and bottom water were studied, and the toxicity of bottom sediments was determined by the survival of the amphipod Gmelinoides fasciatus in 10-day tests for 11 stations in the brackish part of the Gulf of Finland (depths of 10–52 m). Principal component analysis revealed two factors explaining 67% of the variability of the variables and groups of stations similar in terms of conditions. Factor 1 combined nine related variables (depth, metal concentrations, sand fraction in bottom sediments, ratio of nematodes and copepods (N/C index), and survival of amphipods), and Factor 2 combined four variables (organic matter and polyaromatic hydrocarbons in BS, phosphates in water and the number of meiobenthos). Thus, bioindication of the environment by meiobenthos is promising, but requires an integrated approach to be applied in monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. N. A. Berezina and A. A. Maximov, “Quantitative characteristics and food preferences of amphipods (Crustacea: Amphipoda) in the eastern part of the Gulf of Finland of the Baltic Sea,” Zh. Sib. Fed. Univ. Biol., No. 4, 409–426 (2016).

  2. L. V. Vorob’eva and I. I. Kulakova, “Meiobenthos in the system of biological monitoring of sea contact zones,” Sist. Kontrolya Okr. Sredy, No. 19, 262–267 (2013).

    Google Scholar 

  3. O. V. Kocheshkova, E. E. Ezhova, and E. K. Lange, “Feeding characteristics of two common species of polychaetes in the Vistula Lagoon of the Baltic Sea,” Mor. Ekol. Zh. 11 (2), 45–51 (2012).

    Google Scholar 

  4. E. A. Kurashov, Meiobenthos as a Component of the Lake Ecosystem (Alga-Fond, St. Petersburg, 1994) [in Russian].

    Google Scholar 

  5. E. A. Kurashov and D. S. Dudakova, “Meiobenthos of the littoral zone of Lake Ladoga and its use for diagnosing the state of the environment,” Ross. Zh. Prikl. Ekol., No. 4 (16), 22–29 (2018).

  6. A. A. Maximov, “Influence of climatic factors on the dynamics of macrozoobenthos,” in Ecosystem of the Neva River Estuary: Biological Diversity and Environmental Problems, Ed. by A. F. Alimov and S. M. Golubkov (Tov. Nauchn. Izd. KMK, Moscow, 2008), pp. 346–355.

    Google Scholar 

  7. A. A. Maximov and V. A. Petukhov, “The role of macro- and meiobenthos in the benthic communities of the top of the Gulf of Finland,” Tr. Zool. Inst. Ross. Akad. Nauk 315 (3), 289–310 (2011).

    Google Scholar 

  8. V. O. Mokievskii, Ecology of Marine Meiobenthos (Tov. Nauchn. Izd. KMK, Moscow, 2009) [in Russian].

    Google Scholar 

  9. V. O. Mokievsky, L. V. Vorobjeva, L. A. Garlitska, et al., “Long-term changes in the meiobenthos of the eastern part of the Black Sea,” Oceanology 50 (6), 945–952 (2010).

    Article  Google Scholar 

  10. V. O. Mokievskii, A. A. Udalov, and A. I. Azovskii, “Quantitative distribution of meiobenthos in deep-water zones of the World Ocean,” Oceanology 47 (6), 857–874 (2007).

    Article  Google Scholar 

  11. A. E. Rybalko, N. K. Fedorova, and A. A. Maximov, “Influence of hydrotechnical works on the formation of the geochemical structure of bottom sediments (on the example of the eastern part of the Gulf of Finland in 2006–2008),” in Geology of the Seas and Oceans: Proceedings of the XVIII International Scientific Conference (School) on Marine Geology, Ed. by A. P. Lisitsyn (GEOS, Moscow, 2009), Vol. 4, pp. 147–149.

  12. T. N. Alekseeva, N. V. Politova, and N. V. Kozina, “Grain size distribution of the surface layer of bottom sediments in the Barents Sea,” Oceanology 60 (6), 803–816 (2020).

    Article  Google Scholar 

  13. S. Amjad and J. S. Gray, “Use of the Nematode-Copepod Ratio as an index of organic pollution,” Mar. Pollut. Bull. 14, 178–181 (1983).

    Article  Google Scholar 

  14. D. B. Arya, S. G. T. Vincent, and P. S. Godson, “Benthic biotopes: Abiotic and biotic factors in the sediment,” in Ecology and Biodiversity of Benthos (Elsevier, Amsterdam, 2022), pp. 21–31.

    Google Scholar 

  15. L. Bat, “A review of sediment toxicity bioassays using the amphipods and polychaetes,” Turk. J. Fish. Aquat. Sci. 5, 119–139 (2005).

    Google Scholar 

  16. N. A. Berezina, Y. I. Gubelit, Y. M. Polyak, et al., “An integrated approach to the assessment of the eastern Gulf of Finland health: A case study of coastal habitats,” J. Mar. Syst. 171, 159–171 (2017).

    Article  Google Scholar 

  17. N. Berezina, E. Strode, K. Lehtonen, et al., “Sediment quality assessment using Gmelinoides fasciatus and Monoporeia affinis (Amphipoda, Gammaridea) in the northeastern Baltic Sea,” Crustaceana 86 (7–8), 780–801 (2013).

    Article  Google Scholar 

  18. P. A. Chapman, “Decision-making framework for sediment assessment developed for the Great Lakes,” Human Ecol. Risk Assess. 8 (7), 1641–1655 (2002).

    Article  Google Scholar 

  19. B. C. Coull, G. R. F. Hicks, and J. B. J. Wells, “Nematode/Copepod ratios for monitoring pollution: A rebuttal,” Mar. Pollut. Bull. 12, 378–381 (1981).

    Article  Google Scholar 

  20. J. A. Ossa-Carretero, Y. Del-Pilar-Ruso, F. Gimenez-Casalduero, et al., “Sensitivity of amphipods to sewage pollution,” Estuarine, Coastal Shelf Sci. 96, 129–138 (2012).

    Article  Google Scholar 

  21. N. P. Fadeeva, I. P. Bezverbnaja, K. Tazaki, et al., “Composition and structure of marine benthic community regarding conditions of chronic harbour pollution,” Ocean. Polar Res. 25 (1), 21–30 (2003).

    Article  Google Scholar 

  22. N. P. Fadeeva and I. L. Davydkova, “Some aspects of ecology and life history of Oncholaimium ramosum (Nematoda: Oncholaimidae) in polluted cove from the Sea of Japan,” Russ. J. Nematol. 13 (2), 101–110 (2005).

    Google Scholar 

  23. D. G. Galope-Bacaltos, “Composition and spatial distribution of infauna in a river estuary affected by fishpond effluents,” Mar. Pollut. Bull. 44, 816–819 (2002).

    Article  Google Scholar 

  24. J. M. Gee, R. M. Warwick, M. Schaanning, et al., “Effects of organic enrichment on meiofaunal abundance and community structure in sublittoral soft sediments,” J. Exp. Mar. Biol. Ecol. 91, 247–262 (1985).

    Article  Google Scholar 

  25. J. M. Guerra-García, E. Baeza-Rojano, M. P. Cabezas, et al., “The amphipods Caprella penantis and Hyale schmidtii as biomonitors of trace metal contamination in intertidal ecosystems of Algeciras Bay, Southern Spain,” Mar. Pollut. Bull. 58 (5), 783–786 (2009).

    Article  Google Scholar 

  26. T. Jacobson, B. Sundelin, G. Yang, and A. Ford, “Low dose TBT exposure decreases amphipod immunocompetence and reproductive fitness,” Aquat. Toxicol. 101, 72–77 (2010).

    Article  Google Scholar 

  27. P. Jeshma, M. Gandhi Suresh, and N. Rao Rajeshwara, “Benthic foraminifera and geochemical assessment of Puravadaiyanar and Vettar estuaries, Karaikal, south east coast of India—implication for pollution monitoring studies,” Region. Stud. Mar. Sci. 9, 76–88 (2016).

    Article  Google Scholar 

  28. N. M. Kalinkina, N. A. Berezina, A. I. Sidorova, et al., “Toxicity bioassay of bottom sediments in large water bodies in Northwestern Russia with the use of crustaceans,” Water Resour. 40, 657–666 (2013).

    Article  Google Scholar 

  29. H. G. Kim, S. J. Song, H. Bae, et al., “Natural and anthropogenic impacts on long-term meiobenthic communities in two contrasting nearshore habitats,” Environ. Int. 134, 105200 (2020).

    Article  Google Scholar 

  30. M. Lee, J. Correa, and J. Castilla, “An assessment of the potential use of the Nematode to Copepod Ratio in the monitoring of metals pollution. The Chañaral case,” Mar. Pollut. Bull. 42, 696–701 (2001).

    Article  Google Scholar 

  31. V. Marin, M. Moreno, P. Vassallo, et al., “Development of a multistep indicator-based approach (MIBA) for the assessment of environmental quality of harbours,” ICES J. Mar. Sci. 65 (8), 1436–1441 (2008).

    Article  Google Scholar 

  32. A. Maximov, “The long-term dynamics and current distribution of macrozoobenthos communities in the Eastern Gulf of Finland, Baltic Sea,” Russ. J. Mar. Biol. 41, 300–310 (2015).

    Article  Google Scholar 

  33. E. Prato, A. Di Leo, F. Biandolino, and N. Cardellicchio, “Sediment toxicity tests using two species of marine amphipods: Gammarus aequicauda and Corophium insidiosum,” Bull. Environ. Contam. Toxicol. 76 (4), 629–636 (2006).

    Article  Google Scholar 

  34. D. Raffaelli, The behaviour of the Nematode/Copepod ratio in organic pollution studies,” Mar. Environ. Res. 23, 135–152 (1987).

    Article  Google Scholar 

  35. D. Raffaelli and C. F. Mason, “Pollution monitoring with meiofauna, using the ratio of nematodes to copepods,” Mar. Pollut. Bull. 12, 158–163 (1981).

    Article  Google Scholar 

  36. M. N. Rao, S. Gaikwad, A. Ram, et al., “Effects of sedimentary heavy metals on meiobenthic community in tropical estuaries along eastern Arabian Sea,” Environ. Geochem. Health (2022). https://doi.org/10.1007/s10653-022-01239-3

  37. R. Riera, P. Sanchez-Jerez, M. Rodríguez, et al., “Long-term monitoring of fish farms: Application of Nematode/Copepod index to oligotrophic conditions,” Mar. Pollut. Bull. 64 (4), 844–850 (2012).

    Article  Google Scholar 

  38. R. Rosenberg, M. Blomqvist, H. C. Nilsson, et al., “Marine quality assessment by use of benthic species-abundance distributions: A proposed new protocol within European Union Water Framework Directive,” Mar. Pollut. Bull. 49, 728–739 (2004).

    Article  Google Scholar 

  39. M. Rubal, P. Veiga, and C. Besteiro, “Nematode/copepod index: Importance of sedimentary parameters, sampling methodology and baseline values,” Thalassas 25, 9–18 (2009).

    Google Scholar 

  40. G. M. Shiels and K. J. Anderson, “Pollution monitoring using the Nematode/Copepod ratio. A practical application,” Mar. Pollut. Bull. 16 (2), 62–68 (1985).

    Article  Google Scholar 

  41. M. Sciberras, A. Menechella, K. Rucci, et al., “Nematode/copepod ratio and nematode and copepod abundances as bioindicators of pollution: A meta-analysis,” Ecol. Austral. 32, 516–525 (2022).

    Article  Google Scholar 

  42. J. S. Stark, M. Mohammad, A. McMinn, and J. Ingels, “The effects of hydrocarbons on meiofauna in marine sediments in Antarctic,” J. Exp. Mar. Biol. Ecol. 496, 56–73 (2017).

    Article  Google Scholar 

  43. E. Strode, M. Jansons, I. Purina, et al., “Sediment quality assessment using survival and embryo malformation tests in amphipod crustaceans: The Gulf of Riga, Baltic Sea as case study,” J. Mar. Syst. 172, 93–103 (2017).

    Article  Google Scholar 

  44. R. M. Warwick, “The nematode/copepod ratio and its use in pollution ecology,” Mar. Pollut. Bull. 12 (10), 329–333 (1981).

    Article  Google Scholar 

  45. B. Wojtasik, “Evaluation of the stage of development of the littoral of Czorsztynski and Sromowiecki reservoirs (Pieniny Mountains, Poland) on the basis of analyses of meiobenthos assemblages,” Ecohydrol. Hydrobiol. 9 (2–4), 149–157 (2009).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.A. Maksimov for sample collection.

Funding

The work study supported by the ER90 HAZLESS project of the Russia–Estonia Cross-Border Cooperation Program for 2014–2020 and the Ministry of Education and Science and Higher Education of the Russian Federation, state task no. 122031100274-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Berezina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezina, N.A., Petukhov, V.A. Bioindication of Bottom Sediments of the Gulf of Finland by the Composition of Meiobenthos in Combination with Biotesting and Chemical Analysis. Oceanology 63, 352–362 (2023). https://doi.org/10.1134/S0001437023030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437023030025

Keywords:

Navigation