Skip to main content
Log in

Monitoring of Shallow-Water Methane Seeps at Cape Fiolent (Black Sea)

  • MARINE GEOLOGY
  • Published:
Oceanology Aims and scope

Abstract

From 2019 to 2021, integrated studies of new shallow-water methane bubble gas seeps were carried out in the coastal zone near Cape Fiolent (Southwest Coast of Crimea). The studies included determination of the hydrocarbon and isotope composition of bubble gas, measurement of the methane and nutrient concentration in the water in the areas of gas seeps, estimation of the value of bubble flows, and measurement of the hydrophysical parameters over the seep sites compared to background areas. A seasonal type of Cape Fiolent methane seeps was noted, and the durations of its active gas emission phases differed in different years. The increased pore water silica concentration at the seep sites and their localization in the vicinity of freshwater slope springs may indicate its association with submarine freshwater discharge in the area. However, no significant desalination of either pore water or the bottom water layer above the seeps was recorded. Dissolved methane concentrations in pore water at seep sites were two orders of magnitude higher compared to the background areas, reaching 448 μmol/L. High values were also obtained for surface water directly above the bubble gas emission points (maximum 353 nmol/L). Multihour monitoring of the hydrophysical parameters above the active seeps showed a decrease in dissolved oxygen compared to the background sites. The maximum difference in O2 concentrations was 3 mg/L. The carbon isotope composition of bubble gas methane δ13C-CH4 (–62.84 to –38.27‰) and carbon dioxide δ13C-CO2 (–16.83 to –10.17‰) corresponded to a mixture of isotopically heavy gas and near-surface isotopically light gas of microbial origin. The question remains open: what are the reasons for the change in the summer active and cold season passive gas emission phases?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. A. M. Bol’shakov and A. V. Egorov, “On the use of the technique of phase-equilibrium degassing in gasometric studies,” Okeanologiya 27 (5), 861–862 (1987).

    Google Scholar 

  2. Yu. N. Gurskii, Geochemistry of the Lithohydrosphere of the Internal Seas, Vol. 1:Methods of Studying and Formation Processes of the Chemical Composition of Interstitial Waters in the Sediments of the Black, Azov, Caspian, White, and Baltic Seas(GEOS, Moscow, 2003). http://geo.web.ru/db/msg.html?mid=1170531.

  3. V. N. Egorov, Yu. G.Artemov, and S. B. Gulin, Methane Seeps in the Black Sea: Environment-Forming and Ecological Role, Ed. by G. G. Polikarpov (NPTs EKOSI-Gidrofizika, Sevastopol, 2011) [in Russian].

  4. V. N. Egorov, Yu. V. Plugatar’, T. V. Malakhova, et al., “Detection of gas seeps in the water area near Cape Martyan,” Byull. Gos. Nikitsk. Bot. Sada, No. 126, 9–13 (2018).

    Google Scholar 

  5. A. A. Zori, V. D. Korenev, and M. G. Khlamov,Methods, Means, Systems for Measuring and Controlling the Parameters of Aquatic Environments (Donetsk: RIA DonGTU, 2000) [in Russian].

  6. N. N.Zubov, S. V. Bruevich, and V. V. Shuleikin, Oceanographic Tables (Gidrometeoizdat, Moscow, 1931) [in Russian].

    Google Scholar 

  7. E. P. Kayukova and M. V. Charykova, “Features of the chemical composition of ground and surface waters of the Crimean educational practice site of the Geological Faculty of St. Petersburg State University,” Vestn. S.-Peterb. Univ. NaukiZemle, No. 3, 29–47 (2010).

    Google Scholar 

  8. V. G. Kravchenko, “Functioning mechanism of underwater gas flares in the Black Sea,” Geol. Polezn. Iskop. Mir. Okeana, No. 1, pp. 106–115 (2008).

  9. T. V. Malakhova, V. N. Egorov, L. V. Malakhova, et al., “Biogeochemical characteristics of shallow methane seeps of the Crimean coastal areas in comparison with deep-sea seeps of the Black Sea,” Mor. Biol. Zh. 5 (4), 37–55 (2020). https://doi.org/10.21072/mbj.2020.05.4.04

    Article  Google Scholar 

  10. T. V. Malakhova, I. N. Ivanova, A. A. Budnikov, et al., “Distribution of hydrological parameters over the site of methane bubble gas emissions in the Golubaya Bay (Black Sea)—connection with submarine freshwater discharge,”Meteorol. Gidrol., No. 11, 109–118 (2021).

  11. T. V. Malakhova, T. A. Kanapatskii, V. N. Egorov, et al., “Microbial processes and genesis of jet methane gas emissions from coastal regions of the Crimean Peninsula,”Mikrobiologiya 84 (6), 743–752 (2015).

    Google Scholar 

  12. N. V. Pimenov, A. Yu. Merkel’, I. Yu. Tarnovetskii, et al.,“The structure of microbial mats in the coastal areas of Mramornaya Bay (Crimean Peninsula),” Mikrobiologiya 87 (5), 561–572 (2018). https://doi.org/10.1134/S0026365618050142

    Article  Google Scholar 

  13. M. Yu. Promyslova, L. I. Demina, A. Yu. Bychkov, et al., “Ophiolite association of the region of Cape Fiolent (southwestern Crimea) in 2016,” Geotektonika, No. 1, 25–40 (2016).

    Google Scholar 

  14. Guidance on Methods for the Chemical Analysis of Marine Waters (Gidrometeoizdat, Leningrad, 1977) [in Russian].

  15. V. A. Timofeev, E. A. Ivanova, and M. B. Gulin, “Discovery of a new field of gas seeps off the Black Sea coast of the Crimean Peninsula,” Mor. Ekol. Zh. 13 (1), 34 (2014).

    Google Scholar 

  16. Y. G. Artemov, V. N. Egorov, G. G. Polikarpov, and S. B. Gulin, “Methane emission to the hydro- and atmosphere by gas bubble streams in the Dnieper Paleo-Delta, the Black Sea,” Mar. Ecol. J. 5, 5–26 (2007).

    Google Scholar 

  17. A. Boetius, K. Revenschlag, C. J. Schubert, et al., “A Marine microbial consortium apparently mediating anaerobic oxidation of methane,” Nature 407, 623–626 (2000). https://doi.org/10.1038/35036572

    Article  Google Scholar 

  18. G. Bratbak, “Microscope methods for measuring bacterial biovolume: Epifluorescence microscopy, scanning electron microscopy, and transmission electron microscopy,” in Handbook of Methods in Aquatic Microbial Ecology (CRC Press, Boca Raton, FL,2018), pp. 309–317.

    Google Scholar 

  19. A. L. Bryukhanov, M. A. Vlasova, A. A. Perevalova, et al., “Phylogenetic diversity of the sulfur cycle bacteria in the bottom sediments of the Chersonesus Bay,” Microbiology 87 (3), 372–381 (2018).https://doi.org/10.1134/S0026261718030025

    Article  Google Scholar 

  20. G. C. Bugna, et al., “The Importance of groundwater discharge to the methane budgets of near shore and continental shelf waters of the northeastern Gulf of Mexico,” Geochim. Cosmochim. Acta 60 (23), 4735–4746 (1996).

    Article  Google Scholar 

  21. P. Dimitrov, V. Dachev, H. Nikolov, and D. Parlichev, “Natural gas seepages in the offshore area of the Balchik Bay,” Oceanology 4, 43–49 (1979).

    Google Scholar 

  22. L. Dimitrov, “Contribution to atmospheric methane by natural seepages on the Bulgarian continental shelf,” Continent. Shelf Res. 22, 2429–2442 (2002).https://doi.org/10.1016/S0278-4343(02)00055-9

    Article  Google Scholar 

  23. M. Javoy, F. Pineau, and H. Delorme, “Carbon and nitrogen isotope in the mantle,” Chem. Geol. 57, 41–62 (1986).

    Article  Google Scholar 

  24. J.-Z. Zhang and F. J. Millero, “The products from the oxidation of H2S in seawater,” Geochim. Cosmochim. Acta 57 (8), 1705–1718 (1993).https://doi.org/10.1016/0016-7037(93)90108-9

    Article  Google Scholar 

  25. J.-H. Korber, H. Sahling, T. Pape, et al., “Natural oil seepage at Kobuleti Ridge, eastern Black Sea,” Mar. Petrol. Geol. 50, 68–82 (2014).https://doi.org/10.1016/j.marpetgeo.2013.11.007

    Article  Google Scholar 

  26. I. Klaucke, H. Sahling, W. Weinrebe, et al., “Acoustic investigation of cold seeps offshore Georgia, eastern Black Sea,” Mar. Geol. 231, 51–67 (2006).https://doi.org/10.1016/j.margeo.2006.05.011

    Article  Google Scholar 

  27. R. P. Kruglyakova, Y. A. Byakov, M. V. Kruglyakova, et al., “Natural oil and gas seeps on the Black Sea floor,” Geo-Mar. Lett. 24, 150–162 (2004).https://doi.org/10.1007/s00367-004-0171-4

    Article  Google Scholar 

  28. A. L. Lecher, et al., “Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two Alaskan sites,” Limnol. Oceanogr. 61 (S1), 344–S355 (2016).

    Article  Google Scholar 

  29. T. V. Malakhova, A. A. Budnikov, I. N. Ivanova, and A. I. Murashova, “Methane fluid discharge measurements by the trap method in Laspi Bay (Black Sea),” Mos. Univ. Phys. Bull. 75 (6), 702–707 (2020).

    Google Scholar 

  30. A. V. Milkov and G. Etiope, “Revised genetic diagrams for natural gases based on a global dataset of >20 000 Samples,” Org. Geochem. 125, 109–120 (2018).

    Article  Google Scholar 

  31. L. Naudts, J. Greinert, Y. Artemov, et al., “Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea,” Mar. Geol. 227, 177–199 (2006).https://doi.org/10.1016/j.margeo.2005.10.005

    Article  Google Scholar 

  32. C. Pierre, et al., “Authigenic carbonate mounds from active methane seeps on the southern Aquitaine Shelf (Bay of Biscay, France): Evidence for anaerobic oxidation of biogenic methane and submarine groundwater discharge during formation,” Cont. Shelf Res. 133, 13–25 (2017).

    Article  Google Scholar 

  33. M. Romer, H. Sahling, C. dos Santos Ferreira, and G. Bohrmann, “Methane gas emissions of the Black Sea—mapping from the Crimean continental margin to the Kerch Peninsula slope,” Geo-Mar. Lett. 40, 467–480 (2020).https://doi.org/10.1007/s00367-019-00611-0.7

    Article  Google Scholar 

  34. O. Schmale, J. Greinert, and G. Rehder, “Methane emission from high-intensity marine gas seeps in the black sea into the atmosphere,” Geophys. Res. Lett. 32, L07609 (2005).https://doi.org/10.1029/2004GL021138

    Article  Google Scholar 

  35. I. Yu. Tarnovetskii, A. Yu. Merkel, T. A. Kanapatskiy, et al., “Decoupling between sulfate reduction and the anaerobic oxidation of methane in the shallow methane seep of the Black Sea,” FEMS Microbiol. Lett. 365 (21), fny235 (2018).https://doi.org/10.1093/femsle/fny235

    Article  Google Scholar 

  36. M. J. Whiticar, “Carbon and Hydrogen isotope systematics of bacterial formation and oxidation of methane,” Chem. Geol. 161 (1–3), 291–314 (1999).https://doi.org/10.1016/S0009-2541(99)00092-3

    Article  Google Scholar 

Download references

Funding

The study was carried out under state task topic “Molismological and Biogeochemical Foundations of the Homeostasis of Marine Ecosystems,” registration no. 121031500515-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Malakhova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakhova, T.V., Malakhova, L.V., Murashova, A.I. et al. Monitoring of Shallow-Water Methane Seeps at Cape Fiolent (Black Sea). Oceanology 63, 119–130 (2023). https://doi.org/10.1134/S0001437023010083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437023010083

Keywords:

Navigation