Skip to main content

Advertisement

Log in

Application of the High-Temperature Combustion Method for Measuring Organic Carbon Content in Fecal Pellets and Small-Sized (≤1 mm) Zooplankton

  • RESEARCH METHODS AND FACILITIES
  • Published:
Oceanology Aims and scope

Abstract

Organic carbon of fecal pellets and small-sized (≤ 1mm) zooplankton was measured using a high- temperature combustion method. The method was adapted for measurements with Shimadzu TOC-VCPH analyzer equipped with a manual injection module. The range of organic carbon values was 30–10 000 ng ind–1. The samples for analysis were collected during the cruises of the R/V “Akademik Mstislav Keldysh” in the Kara Sea in 2019–2021. Relationship between body carbon (C, µg ind–1) and prosome length (L, mm) of zooplankton describes by the equation С = 4.24 L1.84, r2 = 0.85, n = 46. Carbon of field collected fecal pellet varied from 9.4 to 102.9 µg С mm–3. The carbon to chlorophyll a ratio of fecal pellets differed by more than two orders of magnitude. The highest values (542.1 and 726.1) were obtained in the bays of the Novaya Zemlya Archipelago, the lowest (3.2–5.6) on the Kara sea shelf in June 2021 soon after ice melting. The perspectives of implication of high temperature combustion method for studies of zooplankton in situ feeding and to estimate the contribution of fecal pellets to POC vertical flux are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. E. G. Arashkevich, M. V. Flint, A. B. Nikishina, et al., “The role of zooplankton in the transformation of the organic matter in the Ob estuary, on the shelf, and in the deep regions of the Kara Sea,” Oceanology 50 (5), 780–792 (2010).

    Article  Google Scholar 

  2. A. B. Demidov, V. M. Sergeeva, V. I. Gagarin, et al., “Size-fractionated primary production and chlorophyll in the Kara Sea during the first-year ice retreat,” Oceanology 62 (3), 346–357 (2022). https://doi.org/10.1134/S0001437022030031

    Article  Google Scholar 

  3. A. B. Demidov, V. I. Gagarin, E. V. Eremeeva, et al., “Vertical variability of primary production and Chlorophyll a in the Kara Sea in the middle of summer: Contribution of subsurface maxima to the water column values,” Oceanology 61 (5), 645–661 (2021). https://doi.org/10.1134/S0001437021050040

    Article  Google Scholar 

  4. A. B. Amelina, A. V. Drits, V. M. Sergeeva, et al., “Zooplankton in bays of the Novaya Zemlya archipelago: Composition, distribution, and role in phytoplankton grazing and biosedimentation,” Oceanology 58 (6), 825–837 (2018). https://doi.org/10.1134/S0001437018060012

    Article  Google Scholar 

  5. Y. Abe, M. Natsuike, K. Matsuno, et al., “Variation in assimilation efficiencies of dominant Neocalanus and Eucalanus copepods in the subarctic Pacific: Consequences for population structure models,” J. Exp. Mar. Biol. Ecol. 449, 321–329 (2013). https://doi.org/10.1016/j.jembe.2013.10.023

    Article  Google Scholar 

  6. C. J. Ashjian, R. G. Campbell, H. E. Welch, et al., “Annual cycle in abundance, distribution, and size in relation tohydrography of important copepod species in the western Arctic Ocean,” Deep-Sea Res. I 50, 1235–1261 (2003). https://doi.org/10.1016/S0967-0637(03)00129-8

    Article  Google Scholar 

  7. A. Bailey, P. Thor, H. I. Browman, et al., “Early life stages of the Arctic copepod Calanus glacialis are unaffected by increased seawater pCO2,” ICES J. Mar. Sci. 74, 996–1004 (2017).

    Article  Google Scholar 

  8. U. Bamstedt, D. J. Gifford, X. Irigoien, et al., “Feeding,” in ICES Zooplankton Methodology Manual, Ed. by R. Harris (Academic Press, London, 2000), pp. 297–380.

    Google Scholar 

  9. J. N. Downs and C. J. Lorenzen, “Carbon: Pheopigment ratios of zooplankton fecal pellets as an index of herbivorous feeding,” Limnol. Oceanogr. 30 (5), 1024–1036 (1985).

    Article  Google Scholar 

  10. A. V. Drits, A. F. Pasternak, E. G. Arashkevich, et al., “Influence of riverine discharge and timing of ice retreat on particle sedimentation patterns on the Laptev Sea shelf,” J. Geophys. Res.: Oceans 126 (10), e2021JC017462 (2021). https://doi.org/10.1029/2021JC017462

  11. M. V. Flint, S. G. Poyarkov, N. A. Rimsky-Korsakov, et al., “Ecosystems of the Siberian Arctic Seas-2021: Ecosystem of the Kara Sea in the period of seasonal ice melting (Cruise 83 of the R/V Akademik Mstislav Keldysh),” Oceanology 62 (1), 133–135 (2022). https://doi.org/10.1134/S0001437022010052

    Article  Google Scholar 

  12. A. Forest, V. Galindo, G. Darnis, et al., “Carbon biomass, elemental ratios (C : N) and stable isotopic composition (d13C, d15N) of dominant calanoid copepods during the winter-to-summer transition in the Amundsen Gulf (Arctic Ocean),” J. Plankton Res. 33 (1), 161–178 (2011). https://doi.org/10.1093/plankt/fbq103

    Article  Google Scholar 

  13. H. E. González, S. R. González, and G. A. Brummer, “Short-term sedimentation pattern on zooplankton, faeces, and microzooplankton at a permanent station in the Bjornafjorden (Norway) during April–May 1992,” Mar. Ecol. Prog. Ser. 105, 31–45 (1994).

    Article  Google Scholar 

  14. H. E. González and V. Smetacek, “The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton fecal material,” Mar. Ecol. Prog. Ser. 113, 233–246 (1994).

    Article  Google Scholar 

  15. H.-J. Hirche, “Egg production of the Arctic copepod Calanus glacialis: Laboratory experiments,” Mar. Biol. 103, 311–318 (1989).

    Article  Google Scholar 

  16. H.-J. Hirche and R. N. Bohrer, “Reproduction of the Arctic copepod Calanus glacialis in Fram Straitm” Mar. Biol. 94, 11–17 (1987).

    Article  Google Scholar 

  17. O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland, “Fluorometric determination of chlorophyll,” J. Cons. Perm. Int. Explor. Mer. 30, 3–15 (1965). https://doi.org/10.3354/meps08608

    Article  Google Scholar 

  18. B. H. Hygum and B. W. Hansen, “Growth and development of Calanus finmarchicus nauplii during a diatom spring bloom,” Mar. Biol. 136, 1075–1085 (2000).

    Article  Google Scholar 

  19. T. Juul-Pedersen, C. Michel, and M. Gosselin, “Sinking export of particulate organic material from the euphotic zone in the eastern Beaufort Sea,” Mar. Ecol.: Prog. Ser. 410, 55–70 (2010).

    Article  Google Scholar 

  20. M. R. Landry, R. P. Hassett, V. Fagerness, et al., “Effect of food acclimation on assimilation efficiency of Calanus pacificus,” Limnol. Oceanogr. 29 (2), 361–364 (1984).

    Article  Google Scholar 

  21. R. Latja and K. Salonen, “Carbon analysis for the determination of individual biomasses of planktonic animals,” Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 20 (4), 2556–2560 (1978). https://doi.org/10.1080/03680770.1977.11896915

    Article  Google Scholar 

  22. J.-C. Miquel, B. Gasser, J. Martin, et al., “Downward particle flux and carbon export in the Beaufort Sea, Arctic Ocean; the role of zooplankton,” Biogeosciences 12, 5103–5117 (2015). https://doi.org/10.5194/bg-12-5103-2015

    Article  Google Scholar 

  23. C. E. Morales, A. Bedo, R. P. Harris, et al., “Grazing of copepod assemblages in the north-east Atlantic: The importance of the small size fraction,” J. Plankton Res. 13 (2), 455–472 (1991).

    Article  Google Scholar 

  24. A. F. Pasternak, “Gut fluorescence in herbivorous copepods: An attempt to justify the method,” Hydrobiologia 292/293, 241–248 (1994). https://doi.org/10.1007/BF00229947

    Article  Google Scholar 

  25. A. Pasternak, E. Arashkevich, M. Reigstad, et al., “Dividing mesozooplankton into upper and lower size groups: Applications to the grazing impact in the marginal ice zone of the Barents Sea,” Deep-Sea Res. II 55, 2245–2256 (2008).

    Article  Google Scholar 

  26. D. W. Pond and P. Ward, “Importance of diatoms for Oithona in Antarctic waters,” J. Plankton Res. 33 (1), 105–118 (2011).

    Article  Google Scholar 

  27. K. Salonen, “A versatile method for the rapid and accurate determination of carbon by high temperature combustion,” Limnol. Oceanogr. 24 (1), 177–183 (1979).

    Article  Google Scholar 

  28. J. P. M. Syvitsky and A. G. Lewis, “Sediment ingestion by Tigriopus californicus and other zooplankton: Material transformation and sedimentological considerations,” J. Sediment. Res. 50 (3), 869–880 (1980).

    Article  Google Scholar 

  29. R. Swalethorp, S. Kjellerup, M. Dunweber, et al., “Grazing, egg production, and biochemical evidence of differences in the life strategies of Calanus finmarchicus, C. Glacialis and C. Hyperboreus in Disko Bay, Western Greenland,” Mar. Ecol. Prog. Ser. 429, 125–144 (2011). https://doi.org/10.3354/meps09065

    Article  Google Scholar 

  30. K. W. Tang and H. G. Dam, “Limitation of zooplankton production: Beyond stoichiometry,” Oikos 84 (3), 537–542 (1999).

    Article  Google Scholar 

  31. J. T. Turner, “Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump,” Prog. Oceanogr. 130, 205–248 (2015).

    Article  Google Scholar 

  32. J. Urban-Rich, D. A. Hansell, and M. R. Roman, “Analysis of copepod fecal pellet carbon using a high temperature combustion method,” Mar. Ecol. Prog. Ser. 171, 199–208 (1998). https://doi.org/10.3354/meps171199

    Article  Google Scholar 

  33. V. Valdés, R. Escribano, and O. Vergara, “Scaling copepod grazing in a coastal upwelling system: The importance of community size structure for phytoplankton C flux,” Lat. Am. J. Aquat. Res. 45 (1), 41–54 (2017). https://doi.org/10.3856/vol45-issue1-fulltext-5

    Article  Google Scholar 

  34. J. Walve and U. Larsson, “Carbon, nitrogen and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: Implications for nutrient recycling,” J. Plankton Res. 21 (12), 2309–2321 (1999).

    Article  Google Scholar 

  35. C. Wexels Riser, M. Reigstad, and P. Wassmann, “Zooplankton-mediated carbon export: A seasonal study in a northern Norwegian fjord,” Mar. Biol. Res. 6 (5), 461–471 (2010). https://doi.org/10.1080/17451000903437067

    Article  Google Scholar 

  36. S. E. Wilson, D. K. Steinberg, and K. O. Buesseler, “Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean,” Deep Sea Res. Part II 55 (14), 1636–1647 (2008). https://doi.org/10.1016/j.dsr2.2008.04.019

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the crew of the R/V Akademik Mstislav Keldysh the assistance in works.

Funding

This work was performed under state task no. FMWE-2022-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Drits.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drits, A.V., Belayev, N.A., Karmanov, V.A. et al. Application of the High-Temperature Combustion Method for Measuring Organic Carbon Content in Fecal Pellets and Small-Sized (≤1 mm) Zooplankton. Oceanology 63, 141–148 (2023). https://doi.org/10.1134/S0001437023010022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437023010022

Keywords:

Navigation