Skip to main content
Log in

Concentration and Isotopic and Elemental Composition of Organic Matter in Subsea Thawed and Permafrost Deposits of Buor-Khaya Bay

  • MARINE CHEMISTRY
  • Published:
Oceanology Aims and scope

Abstract

A comparative analysis of the content and composition of organic matter (OM) in samples of bottom sediments and subaqueous permafrost rocks by the concentration of organic carbon (OC), C/N ratio, and isotopic composition of OC (δ13C) was carried out for three boreholes drilled in Buor-Khaya Bay in 2014–2015. The intervals of OC, C/N and δ13C values measured in 105 samples ranged from 0.04 to 23.1% (avg. 2.08%), from 1.00 to 41.7 (avg. 11.8) and from –29.1 to –19.6% (avg. –24.9%), respectively. The highest OC concentrations were found at horizons enriched with plant detritus. Based on the aggregate data obtained, it is shown that the studied sediments and permafrost rocks contain plant, lacustrine, and marine OM. In most samples, it is mixed, but enriched with of continental-vegetation and lacustrine components. According to the isotopic and elemental composition of the OM, it was found that sediments of the Yedoma Suite and Ice Complex are present in the studied strata, and to a lesser extent, deposits of thermokarst lakes and basins flooded by the sea. At a relative distance from the continent, isotopic heaviness of OC was recorded, associated with an increased share of aquatic components in OM, which is confirmed by data on the molecular composition of n-alkanes. There is no correlation between the grain size of sediments and measured organic geochemical parameters, which is a distinctive feature of the studied alluvial strata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. O. V. Dudarev, A. N. Charkin, N. E. Shakhova, et al., Modern Lytomorphic Genesis on the Eastern Arctic Shelf of Russia (Tomsk Polytechnical Univ., Tomsk, 2016) [in Russian].

    Google Scholar 

  2. M. V. Ivanov, A. Yu. Lein, F. E. Zakharova, et al., “Carbon isotopic composition in suspended organic matter and bottom sediments of the East Arctic seas,“ Microbiology 91, 596–605 (2012).

    Article  Google Scholar 

  3. A. K. Kvitkina, “Decomposition of Glucose, Cellulose, and Lignin in the Mineral Substrate Depending on the C/N Ratio,” in Proceedings of the 6th Congress of the Dokuchaev Society of Soil Scientists, Petrorozavodsk-Moscow, 2012 (Moscow, 2012), pp. 137–139.

  4. V. A. Kovda and B. G. Rozanov, Soil Science (Vysshaya shkola, Moscow, 1988) [in Russian].

  5. A. Yu. Lein, M. D. Kravchishina, V. N. Politova, et al., “Transformation of the suspended organic matter on the water-bottom interface in the seas of the Russian Arctic region,” Litolog. Poleznye Iskopaemye, No. 2, 115–145 (2012).

    Google Scholar 

  6. L. I. Lobkovskii, S. L. Nikiforov, N. N. Dmitrevskii, et al., “Gas extraction and degradation of the submarine permafrost rocks on the Laptev Sea shelf,” Oceanology 55, 283–290 (2015).

    Article  Google Scholar 

  7. L. I. Lobkovskii, S. L. Nikiforov, N. E. Shakhova, et al., “Mechanisms responsible for degradation of submarine permafrost on the eastern arctic shelf of Russia,” Dokl. Earth Sciences 449, 280–283 (2013).

    Article  Google Scholar 

  8. S. L. Nikiforov, L. I. Lobkovskii, N. N. Dmitrevskii, et al., “Expected geological and geomorphological risks along the Northern Sea Route,” Dokl. Earth Sciences 466, 75–77 (2013).

    Article  Google Scholar 

  9. A. A. Novikov and O. P. Kisarov, “Justification of the role of the roots of postharvest remains in agrocenoses,“ Nauch. Zhurn. KubGAU 78, 1–10 (2012).

    Google Scholar 

  10. G. Z. Perl’shtein, D. O. Sergeev, G. S. Tipenko, et al., “Hydrocarbon gases and cryolite zone of the Arctic shelf,” Arktika: Ekologiya i Ekonomika 18, 35–44 (2015).

    Google Scholar 

  11. I. I. Pipko, S. P. Pugach, O. G. Savichev, et al., “Dynamics of the dissolved inorganic carbon and CO2 flows between water and atmosphere in the main course of the channel way of the Ob’ River,” Dokl. RAN 484, 691–697 (2019).

    Google Scholar 

  12. T. V. Pogodaeva, T. V. Khodzher, N. A. Zhuchenko, et al., “Influx of organic matter to Buor-Khaya Bay (Laptev Sea), Geolog. Geofiz. 58, 739–752 (2017).

    Google Scholar 

  13. E. A. Romankevich and A. A. Vetrov, Carbon Cycles in Artic Seas (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  14. E. A. Romankevich, A. A. Vetrov, N. A. Belyaev, et al., “Alkanes in Quaternary deposits of the Laptev Sea,” Dokl. Earth Sciences 472, 36–39 (2017).

    Article  Google Scholar 

  15. System of the Laptev Sea and Adjacent Arctic Seas: Current State and History of Development, Ed. by Kh. Kassens (Mosk. Gos. Univ., Moscow, 2009) [in Russian].

    Google Scholar 

  16. A. S. Ulyantsev, N. A. Belyaev, S. Yu. Bratskaya, and E. A. Romankevich, “The molecular composition of lignin as an indicator of subaqueous permafrost thawing,” Dokl. Earth Sciences, 482, 1357–1361 (2018).

    Article  Google Scholar 

  17. A. S. Ulyantsev, S. Yu. Bratskaya, O. V. Dudarev, et al., “Lithological and geochemical characteristics of morpholithogenesis in Buor-Khaya Bay,” Oceanology 60, 353–361 (2020).

    Article  Google Scholar 

  18. A. S. Ulyantsev, S. Yu. Bratskaya, and Yu. O. Privar, “Grain size properties of the bottom sediments from Buor-Khaya Bay,” Oceanology 60, 393–404 (2020).

    Article  Google Scholar 

  19. A. S. Ulyantsev, L. I. Lobkovskii, A. V. Zhavoronkov, et al., “Problems of Arctic shelf research: The experience from integrated geologic and geochemical studies in the Laptev Sea,“ Oceanology 55, 919–925 (2015).

    Article  Google Scholar 

  20. A. S. Ulyantsev, N. V. Polyakova, S. Yu. Bratskaya, et al., “Subsea permafrost thawing as a factor of changes in the elemental composition,” Dokl. Earth Sciences, 483, 11 480–11 484 (2018).

    Google Scholar 

  21. A. S. Ulyantsev, N. V. Polyakova, E. A. Romankevich, et al., “Ionic composition of pore water of shallow shelf of Laptev Sea,” Dokl. RAN 467, 329–335 (2016).

    Google Scholar 

  22. A. S. Ulyantsev, N. A. Prokuda, E. A. Streltsova, et al.” Geochemical typization of the organic matter of bottom sediments by the molecular compositions of limiting aliphatic hydrocarbons,“ Okeanologiya, 61, 822—830 (2021).

    Google Scholar 

  23. A. S. Ulyantsev, E. A. Romankevich, S. Yu. Bratskaya, et al., “Characteristic of quaternary buildup of sediments in Laptev Sea based on the molecular composition of n-alkanes,” Dokl. RAN 473, 600–604 (2017).

    Google Scholar 

  24. A. S. Ulyantsev, E. A. Romankevich, V. I. Peresypkin, et al., “Lignin as an indicator of the buildup of sediments on the Arctic shelf,” Dokl. RAN 467, 75–80 (2016).

    Google Scholar 

  25. A. L. Kholodov, B. N. Zolotareva, and L. T. Shirshova, “Organic matter in main permafrost and genetic types of quaternary sediments of Byrovsky peninsula: content and group composition of humus,” Kriosfera Zemli 10, 29–34 (2006).

    Google Scholar 

  26. V. G. Cheverev, I. Yu. Vidyapin, and V. E. Tumskoi, “Composition and properties of the sediments of karst lagoons of Bykovsky peninsula,” Kriosfera Zemli 11, 44–50 (2007).

    Google Scholar 

  27. C. L. Batchelor and J. A. Dowdeswell, “Ice-sheet grounding-zone wedges (GZWs) on high-latitude continental margins,” Mar. Geol. 363, 65–92 (2015).

    Article  Google Scholar 

  28. H. A. Bauch, H. Kassens, and O. D. Naidina, “Composition and flux of holocene sediments on the eastern Laptev Sea shelf, Arctic Siberia,” Quatern. Res. 55, 344–351 (2001).

    Article  Google Scholar 

  29. L. Broder, A. Andersson, T. Tesi, et al., “Quantifying degradative loss of terrigenous organic carbon in surface sediments across the Laptev and East Siberian Sea,” Global Biogeochem. Cycles 33, 85–99 (2019).

    Article  Google Scholar 

  30. L. Broder, A. Davydova, S. Davydov, et al., “Particulate organic matter dynamics in a permafrost headwater stream and the Kolyma River mainstream,” J. Geophys. Res.: Biogeosciences 125, e2019JG005511 (2020).

  31. L. Broder, T. Tesi, A. Andersson, et al., “Bounding cross-shelf transport time and degradation in Siberian-Arctic land-ocean carbon transfer,” Nature Commun. 9, 806 (2018).

    Article  Google Scholar 

  32. L. Broder, T. Tesi, J. A. Salvado, et al., “Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior,” Biogeosciences 13, 5003–5019 (2016).

    Article  Google Scholar 

  33. A. N. Charkin, O. V. Dudarev, I. P. Semiletov, et al., “Seasonal and interannual variability of sedimentation and organic matter distribution in the Buor-Khaya Gulf: the primary recipient of input from Lena river and coastal erosion in the southeast Laptev Sea,” Biogeosciences 8, 2581–2594 (2011).

    Article  Google Scholar 

  34. J. A. Dowdeswell and D. Ottesen, “Buried iceberg ploughmarks in the early quaternary sediments of the central North Sea: a two-million-year record of glacial influence from 3D seismic data,” Mar. Geol. 344, 1–9 (2013).

    Article  Google Scholar 

  35. V. V. Gordeev, “Fluvial sediment flux to the Arctic Ocean,” Geomorphology 80, 94–104 (2006).

    Article  Google Scholar 

  36. G. Grosse, L. Schirrmeister, C. Siegert, et al., “Geological and geomorphological evolution of a sedimentary periglacial landscape in northeast Siberia during the late quaternary,” Geomorphology 86, 25–51 (2007).

    Article  Google Scholar 

  37. F. Gunther, P. P. Overduin, A. V. Sandakov, et al., “Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region,” Biogeosciences 10, 4297–4318 (2013).

    Article  Google Scholar 

  38. F. Gunther, P. P. Overduin, I. A. Yakshina, et al., “Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction,” Cryosphere 9, 151–178 (2015).

    Article  Google Scholar 

  39. O. Gustafsson, B. E. van Dongen, J. E. Vonk, et al., “Widespread release of old carbon across the Siberian Arctic echoed by its large rivers,” Biogeosciences 8, 1737–1743 (2011).

    Article  Google Scholar 

  40. H. W. Hubberten, A. Andreev, V. I. Astakhov, et al., “The periglacial climate and environment in northern Eurasia during the last glaciation,” Quaternary Sci. Rev. 23, 1333–1357 (2004).

    Article  Google Scholar 

  41. G. Hugelius, J. Strauss, S. Zubrzycki, et al., “Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps,” Biogeosciences 11, 6573–6593 (2014).

    Article  Google Scholar 

  42. L. L. Jongejans, K. Mangelsdorf, L. Schirrmeister, et al., “N-alkane characteristics of thawed permafrost deposits below a thermokarst lake on Bykovsky Peninsula, Northeastern Siberia,” Front. Environ. Sci. 8, 118 (2020).

    Article  Google Scholar 

  43. L. L. Jongejans, J. Strauss, J. Lenz, et al., “Organic Matter Characteristics in Yedoma and thermokarst deposits on Baldwin Peninsula, West Alaska,” Biogeosciences 15, 6033–6048 (2018).

    Article  Google Scholar 

  44. E. S. Karlsson, A. Charkin, O. Dudarev, et al., “Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea,” Biogeosciences 8, 1865–1879 (2011).

    Article  Google Scholar 

  45. H. Lantuit, D. Atkinson, P. P. Overduin, et al., “Coastal erosion dynamics on the permafrost-dominated Bykovsky Peninsula, North Siberia, 1951–2006,” Polar Res. 30, 7341 (2011).

    Article  Google Scholar 

  46. S. Manzoni, R. Jackson, J. Trofymow, et al., “The global stoichiometry of litter nitrogen mineralization,” Science 321, 684–686 (2008).

    Article  Google Scholar 

  47. J. Martens, E. Romankevich, I. Semiletov, et al., “CASCADE–The Circum-ArcticSediment CArbon DatabasE,” Earth Syst. Sci. Data 13, 2561–2572 (2021).

    Article  Google Scholar 

  48. J. Martens, B. Wild, F. Muschitiello, et al., “Remobilization of dormant carbon from Siberian-Arctic permafrost during three past warming events,” Sci. Advances 6, eabb6546 (2020).

  49. J. W. McClelland, R. M. Holmes, K. H. Dunton, et al., “The Arctic Ocean estuary,” Estuaries and Coasts 35, 353–368 (2012).

    Article  Google Scholar 

  50. A. Morgenstern, M. Ulrich, F. Gunther, et al., “Evolution of thermokarst in East Siberian ice-rich permafrost: a case study,” Geomorphology 201, 363–379 (2013).

    Article  Google Scholar 

  51. M. S. Obrezkova, I. B. Tsoy, I. P. Semiletov, et al., “Micropaleontological assessment of sediments from Buor-Khaya Bay (Laptev Sea),” Quaternary Int. 508, 60–69 (2019).

    Article  Google Scholar 

  52. P. P. Overduin, M. C. Strzelecki, M. N. Grigoriev, et al., “Coastal Changes in the Arctic,” in Sedimentary Coastal Zones from High to Low Latitudes: Similarities and Differences, Ed. by I. P. Martini and H. R. Wanless (Geological Society of London Special Publication, London, 2014), Vol. 388, pp. 103–129.

    Google Scholar 

  53. I. V. Perminova, E. A. Shirshin, A. Zherebker, et al., “Signatures of molecular unification and progressive oxidation unfold in dissolved organic matter of the Ob-Irtysh river system along its path to the Arctic Ocean,” Sci. Rep. 9, 19487 (2019).

    Article  Google Scholar 

  54. I. I. Pipko, S. P. Pugach, I. P. Semiletov, et al., “The dynamics of the carbon dioxide system in the outer shelf and slope of the Eurasian Arctic Ocean,” Ocean Sci. 13, 997–1016 (2017).

    Article  Google Scholar 

  55. S. P. Pugach, I. I. Pipko, N. E. Shakhova, et al., “Dissolved organic matter and its optical characteristics in the Laptev and East Siberian Seas: spatial distribution and interannual variability (2003-2011),” Ocean Sci. 14, 87–103 (2018).

    Article  Google Scholar 

  56. N. N. Romanovskii, H. -W. Hubberten, A. V. Gavrilov, et al., “Permafrost of the East Siberian Arctic shelf and coastal lowlands,” Quatern. Sci. Rev. 23, 1359–1369 (2004).

    Article  Google Scholar 

  57. N. N. Romanovskii, H. -W. Hubberten, A. V. Gavrilov, et al., “Thermokarst and land-ocean interactions, Laptev Sea Region, Russia,” Permafrost and Periglac. Process 11, 137–152 (2000).

    Article  Google Scholar 

  58. L. Sanchez-Garcia, J. E. Vonk, A. N. Charkin, et al., “Characterization of three regimes of collapsing arctic ice complex deposits on the SE Laptev sea coast using biomarkers and dual carbon isotopes,” Permafrost and Periglac. Process 25, 172–183 (2014).

    Article  Google Scholar 

  59. L. Schirrmeister, M. N. Grigoriev, J. Strauss, et al., “Sediment characteristics of a thermokarst lagoon in the northeastern Siberian Arctic (Ivashkina Lagoon, Bykovsky Peninsula),” Arctos 4, 13 (2018).

    Google Scholar 

  60. L. Schirrmeister, V. Kunitsky, G. Grosse, et al., “Sedimentary characteristics and origin of the late Pleistocene ice complex on north-east Siberian Arctic coastal lowlands and islands – a review,” Quatern. Int. 241, 3–25 (2011).

    Article  Google Scholar 

  61. L. Schirrmeister, G. Schwamborn, P. P. Overduin, et al., “Yedoma ice complex of the Buor Khaya Peninsula (Southern Laptev Sea),” Biogeosciences 14, 1261–1283 (2017).

    Article  Google Scholar 

  62. L. Schirrmeister, C. Siegert, V. V. Kunitzky, et al., “Late quaternary ice-rich permafrost sequences as a paleoenvironmental archive for the Laptev Sea region in northern Siberia,” Int. J. Earth Sci. 91, 154–167 (2002).

    Article  Google Scholar 

  63. L. Schirrmeister, C. Siegert, T. Kuznetsova, et al., “Paleoenvironmental and paleoclimatic records from permafrost deposits in the arctic region of northern Siberia,” Quatern. Int. 89, 97–118 (2002).

    Article  Google Scholar 

  64. E. A. Schuur, J. Bockheim, J. G. Canadell, et al., “Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle,” BioScience 58, 701–714 (2008).

    Article  Google Scholar 

  65. E. A. G. Schuur, A. D. McGuire, C. Schadel, et al., “Climate change and the permafrost carbon feedback,” Nature 520, 171–179 (2015).

    Article  Google Scholar 

  66. I. Semiletov, I. Pipko, O. Gustafsson, et al., “Acidification of East Siberian arctic shelf waters through addition of freshwater and terrestrial carbon,” Nature Geosci. 9, 361–365 (2016).

    Article  Google Scholar 

  67. I. P. Semiletov, N. E. Shakhova, I. I. Pipko, et al., “Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay of the Laptev Sea,” Biogeosci. 10, 5977–5996 (2013).

    Article  Google Scholar 

  68. N. Shakhova, I. Semiletov, and E. Chuvilin, “Understanding the Permafrost-Hydrate System and Associated Methane Releases in the East Siberian arctic shelf,” Geosciences 9, 251 (2019).

    Article  Google Scholar 

  69. N. Shakhova, I. Semiletov, V. Sergienko, et al., “The East Siberian arctic shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice,” Phil. Trans. R. Soc. A 373, 20140451 (2015).

    Google Scholar 

  70. N. Shakhova, I. Semiletov, O. Gustafsson, et al., “Current rates and mechanisms of subsea permafrost degradation in the East Siberian arctic shelf,” Nature Commun. 8, 15872 (2017).

    Article  Google Scholar 

  71. C. Siegert, L. Schirrmeister, and O. Babiy, “The sedimentological, mineralogical and geochemical composition of late pleistocene deposits from the ice complex on the Bykovsky Peninsula, Northern Siberia,” Polarforschung 70, 3–11 (2002).

    Google Scholar 

  72. R. Stein and R. W. Macdonald, The Organic Carbon Cycle in the Arctic Ocean (Springer, Berlin, 2004).

    Book  Google Scholar 

  73. J. Strauss, L. Schirrmeister, G. Grosse, et al., “Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability,” Earth-Sci. Rev. 172, 75–86 (2017).

    Article  Google Scholar 

  74. J. Strauss, L. Schirrmeister, G. Grosse, et al., “The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska,” Geophys. Res. Lett. 40, 6165–6170 (2013).

    Article  Google Scholar 

  75. J. Strauss, L. Schirrmeister, S. Wetterich, et al., “Grain-Size properties and organic-carbon stock of Yedoma ice complex permafrost from the Kolyma Lowland, Northeastern Siberia,” Global Biogeochem. Cycl. 26, GB3003 (2012).

  76. T. Tesi, I. Semiletov, G. Hugelius, et al., “Composition and fate of terrigenous organic matter along the arctic land-ocean continuum in East Siberia: insights from biomarkers and carbon isotopes,” Geochim. Cosmochim. Acta 133, 235–256 (2014).

    Article  Google Scholar 

  77. T. Tesi, I. P. Semiletov, O. V. Dudarev, et al., “Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross-shelf transport in the Laptev and East Siberian shelf seas,” J. Geophys. Res. Biogeosci. 121, 1–22 (2016).

    Google Scholar 

  78. M. R. Turetsky, B. W. Abbott, M. C. Jones, et al., “Permafrost collapse is accelerating carbon release,” Nature 569, 32–34 (2019).

    Article  Google Scholar 

  79. J. E. Vonk and O. Gustafsson, “Permafrost-carbon complexities,” Nature Geosci. 6, 675–676 (2013).

    Article  Google Scholar 

  80. J. E. Vonk, L. Sanchez-Garcia, B. E. van Dongen, et al., “Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia,” Nature 489, 137–140 (2012).

    Article  Google Scholar 

  81. J. E. Vonk, I. P. Semiletov, O. V. Dudarev, et al., “Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters,” J. of Geoph. Res.: Oceans 119, 8410–8421 (2014).

    Article  Google Scholar 

  82. J. E. Vonk and B. E. van Dongen, and Ö. Gustafsson, “Selective preservation of old organic carbon fluvially released from sub-arctic soils,” Geophys. Rev. Lett. 37, L11605 (2010).

  83. M. Winterfeld, G. Mollenhauer, W. Dummann, et al., “Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost,” Nature Comm. 9, 3666 (2018).

    Article  Google Scholar 

  84. X. Xiao, K. Fahl, and R. Stein, “Biomarker distributions in surface sediments from the Kara and Laptev Seas (Arctic Ocean): indicators for organic-carbon sources and sea-ice coverage,” Quatern. Sci. Rev. 79, 40–52 (2013).

    Article  Google Scholar 

  85. C. H. Xu, L. D. Guo, C. L. Ping, et al., “Chemical and isotopic characterization of size-fractionated organic matter from cryoturbated tundra soils, Northern Alaska,” J. Geophys. Res. Biogeosci. 114, G03002 (2009).

    Article  Google Scholar 

  86. S. A. Zimov, S. P. Davydov, G. M. Zimova, et al., “Permafrost carbon: stock and decomposability of a globally significant carbon pool,” Geophys. Rev. Lett. 33, L20502 (2006).

  87. S. A. Zimov, E. A. G. Schuur, and S. F. Chapin III, “Permafrost and the global carbon budget,” Science 312, 1612–1613 (2006).

    Article  Google Scholar 

Download references

Funding

Analyses of stable carbon isotopes were supported by the Russian Science Foundation (project no. 19-77-10 044). The results were generalized within the framework of the state task of IO RAS (topic no. 0128-2021-0005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Ulyantsev, S. Yu. Bratskaya or O. V. Dudarev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulyantsev, A.S., Bratskaya, S.Y., Dudarev, O.V. et al. Concentration and Isotopic and Elemental Composition of Organic Matter in Subsea Thawed and Permafrost Deposits of Buor-Khaya Bay. Oceanology 62, 487–499 (2022). https://doi.org/10.1134/S0001437022030158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437022030158

Keywords:

Navigation