Skip to main content

Advertisement

Log in

Site Selection for Marine Aquaculture Using Hydrodynamic Simulation

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

The Delft3D Flow model was applied to simulation of the hydrodynamic regime of Voevoda Bay (the southern Primorye, Russky Island, Peter the Great Bay, Russia). The streamflow and distributed inflow from the territories adjacent to the bay was simulated using the SWAT hydrological model. The simulation results were compared with published recommendations on the technology of the off-bottom and bottom culture of the Pacific oyster (Crassostrea gigas) and yesso scallop (Mizuhopecten yessoensis) and with the distribution of benthic organisms in the bay. The lines of equal probability exceedance of optimal environment conditions for bivalves were used to identify the culture zones and boundaries: for bottom culture, in the near-bottom water layer, for off-bottom culture, in the middle water layer. Zones of bottom culture were limited by 1-m isobaths, for off-bottom culture, by 5-m isobaths. The areas optimal for marine aquaculture were outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. N. Akulin, V. D. Dzizyurov, and S. E. Pozdnyakov, “Past, present, and future of aquaculture in Far East,” Tr. VNIRO 153, 121–136 (2015).

    Google Scholar 

  2. Yu. A. Barabanshchikov, P. Ya. Tishchenko, P. Yu. Semkin, T. I. Volkova, V. I. Zvalinskii, T. A. Mikhailik, S. G. Sagalaev, A. F. Sergeev, P. P. Tishchenko, M. G. Shvetsova, and E. M. Shkirnikova, “Seasonal hydrological and hydrochemical surveys in the Voevoda Bay (Amur Bay, the Sea of Japan),” Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr. 180, 161–178 (2015). https://doi.org/10.26428/1606-9919-2015-180-161-178

    Article  Google Scholar 

  3. Yu. A. Barabanshchikov, P. Ya. Tishchenko, P. Yu. Semkin, T. A. Mikhailik, and A. A. Kos’yanenko, “Conditions of forming for therapeutic mud in the Voevoda Bay (Amur Bay, the Sea of Japan),” Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr. 192, 167–176 (2018). https://doi.org/10.26428/1606-9919-2018-192-167-176

    Article  Google Scholar 

  4. A. Yu. Baranov, G. I. Viktorovskaya, and V. D. Dzizyurov, “Cultivation of the Pacific oyster Crassostrea gigas in Far East,” in Proceedings of the All-Russian Scientific-Practical Conference with International Participation Dedicated to the 145th Anniversary of the Sevastopol Biological Station “Marine Biological Studies: Achievements and Prospects,” Sevastopol, September 19–24, 2016 (EKOSI-Gidrofizika, Sevastopol, 2016), Vol. 3, pp. 342–345.

  5. V. A. Brykov and N. K. Kolotukhina, “Biological principles of scallop in coastal waters of Primorskii krai,” Vopr. Rybolov. 11 (3), 564–586 (2009).

    Google Scholar 

  6. A. N. Bugaets, B. I. Gartsman, A. A. Tereshkina, L. V. Gonchukov, N. D. Bugaets, N. Yu. Sidorenko, N. F. Pshenichnikova, and S. M. Krasnopeyev, “Using the SWAT model for studying the hydrological regime of a Small River basin (the Komarovka River, Primorsky krai),” Russ. Meteorol. Hydrol. 43, 323–331 (2018).

    Article  Google Scholar 

  7. V. D. Budaeva, Yu. I. Zuenko, and V. G. Makarov, “The structure and dynamics of waters in the Peter the Great Bay during strong summer desalinization (2008–2009),” Tr. Dal’nevost. Reg. Nauchno-Issled. Gidrometeorol. Inst., No. 1, 158–172 (2010).

  8. G. S. Gavrilova, Doctoral Dissertation in Biology (TINRO Center, Vladivostok, 2012).

  9. G. S. Gavrilova and L. N. Kim, “Effective cultivation of the scallop (Mizuhopecten yessoensis) in the Ussuri Bay (the Sea of Japan),” Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr. 185, 240–250 (2016). https://doi.org/10.26428/1606-9919-2016-185-240-250

    Article  Google Scholar 

  10. G. S. Gavrilova and A. V. Kucheryavenko, Productivity of Plantations of Bivalvia Mollusks in Primorye (TINRO Center, Vladivostok, 2011), pp. 101–111. ISBN 978-5-89131-099-5. https://rucont.ru/efd/278345.

    Google Scholar 

  11. K. S. Ganzei, A. G. Kiseleva, and N. F. Pshenichnikova, Landscapes of the Russky Island: A Map, Scale 1 : 25 000 (Kolorit, Vladivostok, 2016) [in Russian].

  12. B. I. Gartsman, A. N. Bugayets, N. D. Tegai, and S. M. Krasnopeyev, “Analysis of the structure of river systems and the prospects for modeling hydrological processes,” Geogr. Nat. Resour. 29, 116–123 (2008).

    Article  Google Scholar 

  13. A. M. Gorchakov, The Elements of Water Balance and Its Structure in Primorye (Gidrometeoizdat, Leningrad. 1983) [in Russian].

    Google Scholar 

  14. R. A. Deeva, Catalogue of Harmonic and Non-Harmonic Constant Tides of the National Far Eastern Seas (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  15. G. I. Ivanov, Pedogenesis in the South of Far East (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  16. A. V. Kucheryavenko and A. P. Zhuk, Guide for Cultivation of the Pacific Oyster (TINRO Center, Vladivostok, 2011) [in Russian].

    Google Scholar 

  17. A. V. Kucheryavenko and A. P. Zhuk, Guide for Cage and Bottom Cultivation of the Scallop (TINRO Center, Vladivostok, 2011) [in Russian].

    Google Scholar 

  18. A. F. Karpevich, “Potential properties of hydrobionts and their implementation in aquaculture,” in Biological Principles of Mariculture (VNIRO, Moscow, 1998), pp. 78–100.

    Google Scholar 

  19. F. R. Likht, A. S. Astakhov, A. I. Botsul, et al., The Structure of Sediments and Facies of the Sea of Japan: Monograph (Far Eastern Scientific Center, Academy of Sciences of USSR, Vladivostok, 1983) [in Russian].

    Google Scholar 

  20. Navigation of the Northwestern Coast of the Sea of Japan from the Tumannaya River to Cape Belkin (Directorate for Navigation and Oceanography, Leningrad, 1984) [in Russian].

  21. S. A. Lyashenko, “Features of Mytilus trossulus reproduction in the Voevoda Bay (Russky Island),” Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr. 140, 352–365 (2005).

    Google Scholar 

  22. P. A. Moiseev, A. F. Karpevich, O. D. Romanycheva, et al., Marine Aquaculture (Agropromizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  23. A. V. Silina and Yu. E. Bregman, “Abundance and biomass,” in Scallop in Primorye (Far Eastern Scientific Center, Academy of Sciences of USSR, Vladivostok, 1986), pp. 190–200.

    Google Scholar 

  24. A. V. Silina, “Distribution and habitat,” in Scallop in Primorye (Far Eastern Scientific Center, Academy of Sciences of USSR, Vladivostok, 1986), pp. 14–19.

    Google Scholar 

  25. A. V. Silina and L. A. Pozdnyakova, “Growth,” in Scallop in Primorye (Far Eastern Scientific Center, Academy of Sciences of USSR, Vladivostok, 1986), pp. 144–164.

  26. T. I. Supranovich and L. P. Yakunin, “Hydrology of the Peter the Great Bay,” Tr. Dal’nevost. Reg. Nauchno-Issled. Gidrometeorol. Inst., No. 22, 104–105 (1976).

  27. A. V. Suprunovich and Yu. N. Makarov, Cultivated Invertebrates. Food Invertebrates: Mussels, Oysters, Scallops, Crayfish, and Shrimps (Naukova Dumka, Kyiv, 1990) [in Russian].

    Google Scholar 

  28. Cultivation of scallop in Primorye, ESIMO portal, Version 1.6.8, 1999–2020. http://portal.esimo.ferhri.ru/ portal/portal/poi/japan/pacificKISWindowJapan. Accessed April 20, 2020.

  29. Yu. M. Yakovlev, V. A. Rakov, and L. V. Dolgov, “Reproduction and development of the Pacific oyster Crassostrea gigas Thunb.,” in Fouling Organisms from Far Eastern Seas (Far Eastern Scientific Center, Academy of Sciences of USSR, Vladivostok, 1981), pp. 79–93.

    Google Scholar 

  30. J. Aguilar-Manjarrez, D. Soto, and R. E. Brummett, Aquaculture Zoning, Site Selection and Area Management Under the Ecosystem Approach to Aquaculture: A Handbook (UN Food and Agriculture Organization, Rome, 2017).

    Google Scholar 

  31. J. G. Arnold, P. M. Allen, and G. Bernhardt, “A comprehensive surface-groundwater flow model,” J. Hydrol. 142, 47–69 (1993).

    Article  Google Scholar 

  32. A. N. Bugaets, B. I. Gartsman, S. Yu. Lupakov, V. V. Shamov, L. V. Gonchukov, N. F. Pshenichnikova, and A. A. Tereshkina, “Modeling the hydrological regime of small testbed catchments based on field observations: a case study of the Pravaya Sokolovka River, the Upper Ussuri River basin,” Water Resour. 46, S8–S16 (2019).

    Article  Google Scholar 

  33. A. N. Bugaets, L. V. Gonchukov, O. V. Sokolov, B. I. Gartsman, and S. M. Krasnopeyev, “Information system to support regional hydrological monitoring and forecasting,” Water Resour. 45, S59–S66 (2018).

    Article  Google Scholar 

  34. L. V. Gonchukov, A. N. Bugaets, B. I. Gartsman, and K. T. Lee, “Weather radar data for hydrological modeling: an application for south of Primorye region, Russia,” Water Resour. 46, S25–S30 (2019).

    Article  Google Scholar 

  35. J. M. Kapetsky and J. Aguilar-Manjarrez, Geographic Information Systems, Remote Sensing and Mapping for the Development and Management of Marine Aquaculture: FAO Fisheries Technical Paper No. 458 (UN Food and Agriculture Organization, Rome, 2007).

  36. G. R. Lesser, J. A. Roelvink, et al. “Development and validation of a three-dimensional morphological model,” Coastal Eng. 51 (8–9), 883–915 (2004).

    Article  Google Scholar 

  37. Yu. G. Motovilov, A. N. Bugaets, B. I. Gartsman, L. V. Gonchukov, A. S. Kalugin, V. M. Moreido, Z. A. Suchilina, and E. A. Fingert, “Assessing the sensitivity of a model of runoff formation in the Ussuri River basin,” Water Resour. 45, S128–S134 (2018).

    Article  Google Scholar 

  38. Site Selection and Carrying Capacities for Inland and Coastal Aquaculture, Ed. by L. G. Ross, T. C. Telfer, L. Falconer, D. Soto, and J. Aguilar-Manjarrez (UN Food and Agriculture Organization, Rome, 2013).

    Google Scholar 

  39. C. Silva, J. G. Ferreira, S. B. Bricker, T. A. DelValls, M. L. Martín-Díaz, and E. Yáñez, “Site selection for shellfish aquaculture by means of GIS and farm-scale models, with an emphasis on data-poor environments,” Aquaculture 318, 444–457 (2011).

    Article  Google Scholar 

  40. G. Shatkin, S. E. Shumway, and R. Hawes, “Considerations regarding the possible introduction of the Pacific oyster (Crassostrea gigas) to the Gulf of Maine: a review of global experience,” J. Shellfish Res. 16 (2), 463–477 (1997).

    Google Scholar 

  41. The State of World Fisheries and Aquaculture 2006 (UN Food and Agriculture Organization, Rome, 2007).

Download references

ACKNOWLEDGMENTS

The authors are grateful to G.Yu. Kharitonova, principal engineer, Far Eastern Regional Hydrometerological Research Institute (FERHRI), for the data on the characteristics of the tidal regime in the study area.

Funding

This study was supported by the Russian Science Foundation (grant no. 17-77-30 006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Katrasov.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katrasov, S.V., Bugaets, A.N., Zharikov, V.V. et al. Site Selection for Marine Aquaculture Using Hydrodynamic Simulation. Oceanology 61, 380–389 (2021). https://doi.org/10.1134/S0001437021030061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437021030061

Keywords:

Navigation