Skip to main content
Log in

Content of Organic Carbon, Nitrogen, and Phosphorus in Deep-Water Coralline Algae Biocenoses, South China Sea

  • MARINE CHEMISTRY
  • Published:
Oceanology Aims and scope

Abstract

The influence of habitat depth on the content of organic carbon (Corg), as well as organic and mineral forms of nitrogen (N) and phosphorus (P), in the biocenosis of coralline algae at depths of 5 to 150 m was studied in spring in the South China Sea. It has been found that the Corg content in tissues decreased from 72 to 42 g/m2 with increasing depth to 150 m. The N content also decreased with depth but to a lesser extent, from 15 to 10 g/m2, while the P content increased linearly from 0.75 to 4.29 g/m2. The atomic ratio C/N/P in the biocenosis at depths of 5–10 m did not vary significantly and averaged at 187 : 31 : 1, which is comparable to the mean values obtained for the common species of reef-building corals. Unlike Corg and N, the P content in the algal biocenosis increased with depth more than fivefold. Correspondingly, the C/N/P ratio amounted to 24 : 5 : 1 at a depth of 150 m. Such a depth-dependent increase in the proportion of phosphorus in the biocenosis, with simultaneous reduction in the Corg and, to a lesser extent, N contents, can be explained by the release of phosphorus during in the breakdown of organic matter in the biocenosis of coralline algae with the formation of insoluble calcium phosphates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. N. Baturin, “Primary production of organic matter in the ocean and phosphate accumulation,” Dokl. Earth Sci. 407, 486–490 (2006).

    Article  Google Scholar 

  2. M. I. Bilan and A. I. Usov, “Polysaccharides of calcareous algae and their effect on calcification process,” Russ. J. Bioorg. Chem. 27, 2–16 (2001).

    Article  Google Scholar 

  3. N. G. Erlov, Optics of the Sea (Gidrometeoizdat, Leningrad, 1980) [in Russian].

    Google Scholar 

  4. Yu. Ya. Latypov, “Changes in the composition and structure of coral communities of Mju and Moon islands, Nha Trang Bay, South China Sea,” Russ. J. Mar. Biol. 32, 269–275 (2006).

    Article  Google Scholar 

  5. L. N. Propp, S. D. Kashenko, and M. V. Propp, “Determination of general biogenic elements,” in Methods of Chemical Analysis in Hydrobiological Studies (Far Eastern Scientific Center, Academy of Sciences of USSR, Vladivostok, 1979), pp. 63–88.

    Google Scholar 

  6. M. V. Propp, V. G. Tarasov, and I. I. Cherbadgy, “Metabolism of bottom groups,” in Biology of Coral Reefs: Studies on the Fathom Bank (Timor Sea) (Far Eastern Scientific Center, Academy of Sciences of USSR, Vladivostok, 1983), pp. 75–103.

  7. Manual on Chemical Analysis of Marine and Fresh Waters during Ecological Monitoring of Fishery Reservoirs and the Regions of the World Ocean Prospective for Fishery, Ed. by V. V. Sapozhnikov (VNIRO, Moscow, 2003) [in Russian].

    Google Scholar 

  8. A. V. Skriptsova, T. L. Kalita, and Yu. V. Nabivailo, “Evaluation of Zostera marina + Sargassum community affected by anthropogenic impact,” Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr. 174, 257–270 (2013).

    Google Scholar 

  9. Yu. I. Sorokin, Ecosystems of Coral Reefs (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  10. A. T. Titov and G. N. Baturin, “Microstructure and formation mechanism of calcium phosphate in recent phosphorites,” Dokl. Earth Sci. 419, 312–315 (2008).

    Article  Google Scholar 

  11. I. I. Cherbadgy, L. N. Propp, and Nguen Tak An, “Influence of hydrological and hydrochemical parameters on the production characteristics of phytoplankton in the coral reef zone of South Vietnam,” Vestn. Morsk. Gos. Univ., Ser.: Teor. Prakt. Zashch. Morya, No. 18, 104–115 (2007).

    Google Scholar 

  12. I. I. Cherbadgy and L. N. Propp, “Photosynthesis and respiration of a deep-water periphyton community (Macclesfield Bank, South China Sea),” Russ. J. Mar. Biol. 34, 301–308 (2008). https://doi.org/10.1134/S1063074008050064

    Article  Google Scholar 

  13. E. L. Shkol’nik, G. N. Baturin, and E. A. Zhegallo, “On the origin of phosphorites from Christmas Island in the Indian Ocean,” Oceanology (Engl. Transl.) 48, 94–104 (2008).

  14. A. J. Andersson, “Fundamental paradigm for coral reef carbonate sediment dissolution,” Front. Mar. Sci. 2, 52 (2015). https://doi.org/10.3389/fmars.2015.00052

    Article  Google Scholar 

  15. M. J. Atkinson and S. V. Smith, “C : N : P ration of benthic marine plants,” Limnol. Oceanogr. 28, 568–574 (1983).

    Article  Google Scholar 

  16. M. E. Baird and J. H. Middleton, “On relating physical limits to the carbon : nitrogen ratio of unicellular algae and benthic plants,” J. Mar. Syst. 49, 169–175 (2004).

    Article  Google Scholar 

  17. M. Björg, S. M. Mohammed, M. Björklund, and A. Semesi, “Coralline algae, important coral-reef builders threatened by pollution,” Ambio 24 (7–8), 502–505 (1995).

    Google Scholar 

  18. M. A. Borowitzka, “Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A. foliacea,” Mar. Biol. 62, 17–23 (1981).

    Article  Google Scholar 

  19. D. Bosence and J. Wilson, “Maerl growth, carbonate production rates and accumulation rate in the north-eastern Atlantic,” Aquat. Conserv.: Mar. Freshwater Ecosyst. 13, 21–31 (2003).

    Article  Google Scholar 

  20. H. L. Burdett, V. Keddie, N. MacArthur, et al., “Dynamic photoinhibition exhibited by red coralline algae in the Red Sea,” BMC Plant Biol. 14, 139 (2014).

    Article  Google Scholar 

  21. C.-T. A. Chen, S.-L. Wang, et al., “Nutrient budgets for the South China Sea basin,” Mar. Chem. 75, 281–300 (2001).

    Article  Google Scholar 

  22. I. I. Cherbadgy, “The content of photosynthetic pigments in deep coralline algal community in the South China Sea,” in Life-Supporting Asia-Pacific Marine Ecosystems, Biodiversity and Their Functioning (Science Press, Beijing, 2017), pp. 165–170.

    Google Scholar 

  23. K. L. Daly, D. W. R. Wallace, W. O. Smith, et al., “Non-Redfield carbon and nitrogen cycling in the Arctic: effects of ecosystem structure and dynamics,” J. Geophys. Res.: Oceans 104 (2), 3185–3199 (1999).

    Article  Google Scholar 

  24. A. J. Dean, R. S. Steneck, D. Tager, and J. M. Pandolfi, “Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef,” Coral Reefs 34, 581–594 (2015). https://doi.org/10.1007/s00338-015-1263-5

    Article  Google Scholar 

  25. G. De’ath, K. E. Fabricius, H. Sweatman, and M. Puotinen, “The 27-year decline of coral cover on the Great Barrier Reef and its causes,” Proc. Natl. Acad. Sci. U.S.A. 109 (2), 17 995–17 999 (2012).

    Article  Google Scholar 

  26. I. Díez, A. Secilla, A. Santolaria, and J. M. Gorostiaga, “Phytobentic intertidal community structure along an environmental pollution gradient,” Mar. Poll. Bull. 38, 463–472 (1999).

    Article  Google Scholar 

  27. M. A. O. Figueiredo, R. Coutinho, A. B. Villas-Boas, et al., “Deep-water rhodolith productivity and growth in the southwestern Atlantic,” J. Appl. Phycol. 24, 487–493 (2012). https://doi.org/10.1007/s10811-012-9802-8

    Article  Google Scholar 

  28. M. S. Foster, “Rhodoliths: between rocks and soft places,” J. Phycol. 37, 659–667 (2001).

    Article  Google Scholar 

  29. S. Gray, J. Kinross, and P. Read, “The nutrient assimilative capacity of maerl as a substrate in constructed wetland systems for waste treatment,” Water Res. 34 (8), 2183–2190 (2000). https://doi.org/10.1016/S0043-1354(99)00414-5

    Article  Google Scholar 

  30. O. Hoegh-Guldberg, E. S. Poloczanska, W. Skiving, and S. Dove, “Coral reef ecosystems under climate change and ocean acidification,” Front. Mar. Sci., (2017). https://doi.org/10.3389/fmars.2017.00158

  31. M. Holcomb, A. A. Venn, E. Tambutte, et al., “Coral calcifying fluid pH dictates response to ocean acidification,” Sci. Rep. 4, 5207 (2014). https://doi.org/10.1038/srep05207

    Article  Google Scholar 

  32. S. D. J. Inglethorpe, Measurement of Selected Physical Properties of Three Samples Submitted by SAC Consultants: British Geological Survey Technical Report MPSR/92/17 (British Geological Survey, Nottingham, 1992).

  33. N. P. James and I. A. Macintyre, “Carbonate depositional environments: modern and ancient Part 1. Reef-zonation, depositional facies, diagenesis,” Colo. Sch. Mines Q. 80, 1–70 (1985).

    Google Scholar 

  34. N. A. Kamenos, H. L. Burdett, E. Alioso, et al., “Coralline algal structure is more sensitive to rate, rather than magnitude, of ocean acidification,” Global Change Biol. 19, 3621–3628 (2013).

    Article  Google Scholar 

  35. D. V. Kinsey and P. J. Davies, “Effects of elevated nitrogen and phosphorus on coral reef growth,” Limnol. Oceanogr. 24, 935–940 (1979).

    Article  Google Scholar 

  36. B. E. Lapointe, M. M. Littler, and D. S. Littler, “Nutrient availability to marine macroalgae in siliciclastic versus carbonate-rich coastal waters,” Estuaries 15 (1), 75–82 (1992).

    Article  Google Scholar 

  37. B. E. Lapointe, P. J. Barile, M. M. Littler, et al., “Macroalgal blooms on southeast Florida coral reefs I. Nutrient stoichiometry of the invasive green alga Codium isthmocladum in the wider Caribbean indicates nutrient enrichment,” Harmful Algae 4, 1092–1105 (2005).

    Article  Google Scholar 

  38. M. M. Littler and D. S. Littler, “Models of tropical reef biogenesis: the contribution of algae,” Prog. Phicol. Res. 3, 323–364 (1984).

    Google Scholar 

  39. M. M. Littler, D. S. Littler, S. M. Blair, and J. N. Norris, “Deep-water plant communities from an unchartered seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity,” Deep-Sea Res. 33, 881–892 (1986).

    Article  Google Scholar 

  40. M. M. Littler, D. S. Littler, and M. D. Hanisak, “Deep-water rhodolith distribution, productivity and growth history at sites of formation and subsequent degradation,” J. Exp. Mar. Biol. Ecol. 150, 163–182 (1991).

    Article  Google Scholar 

  41. S. J. McCoy and N. A. Kamenos, “Coralline algae (Rodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change,” J. Phycol. 51, 6–24 (2015). https://doi.org/10.1111/jpy.12262

    Article  Google Scholar 

  42. M. Milazzo, R. Rodolfo-Metalpa, V. B. S. Chan, et al., “Ocean acidification impairs vermetid reef recruitment,” Sci. Rep. 4, 4189 (2014). https://doi.org/10.1038/srep04189

    Article  Google Scholar 

  43. J. Morphy and J. P. Riley, “Modified single solution method for the determination of phosphate in natural waters,” Anal. Chim. Acta 27 (1), 31–36 (1962).

    Article  Google Scholar 

  44. M. C. Nash, B. N. Opdyke, U. Troitzsch, et al., “Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions,” Nat. Clim. Change 2, 1–5 (2012).

    Article  Google Scholar 

  45. Nguen Tac An, Vo Duy Son, Phan Minh Thu, et al., “Tracing sediment transport and bed regime in Nhatrang Bay,” Coll. Mar. Res. Works 10, 63–69 (2000).

    Google Scholar 

  46. T.-A. Nguen, M.-T. Phan, I. I. Cherbadgy, et al., “Primary production of coral ecosystems in the Vietnamese coastal end adjacent marine waters,” Deep Sea Res., Part II 96, 56–64 (2013). https://doi.org/10.1016/j.dsr2.2013.05.020

    Article  Google Scholar 

  47. C. E. Payri, S. Maritorena, Ch. Bizeau, and M. Rodière, “Photoacclimation in the tropical coralline alga Hydrolithon oncodes (Rhodophyta, Coralllinaceae) from a French Polynesian reef,” J. Phycol. 37, 223–234 (2001).

    Article  Google Scholar 

  48. A. C. Redfield, B. H. Ketchum, and F. A. Richards, “The influence of organisms on the composition of sea-water,” in The Sea, Ed. by M. N. Hill (Wiley, New York, 1963), Vol. 2, pp. 26–77.

    Google Scholar 

  49. R. Riosmena-Rodriguez, “Natural history of rhodolith/maerl beds: their role in near-shore biodiversity and management,” in Rhodolith/Maerl Beds: A Global Perspective, Ed. by R. Riosmena Rodríguez, (Springer-Verlag, New York, 2017), pp. 3–27. .https://doi.org/10.1007/978-3-319-29315-8

    Book  Google Scholar 

  50. L. Solorzano, “Determination of ammonia in natural waters by phenolhypochlorite method,” Limnol. Oceanogr. 14 (4), 799–801 (1969).

    Article  Google Scholar 

  51. H. Spalding, M. S. Foster, and J. N. Heine, “Composition, distribution, and abundance of deep-water (>30 m) macroalgae in Central California,” J. Phycol. 39 (2), 273–283 (2003).

    Article  Google Scholar 

  52. J. D. H. Strickland and T. R. Parsons, “Determination of particulate carbon,” in A Practical Handbook of Seawater Analysis, Bulletin Fisheries Research Board of Canada vol. 167 ((Fisheries Research Board of Canada, Ottawa, 1972), pp. 207–211.

    Google Scholar 

  53. R. E. Turner, “Element ratios and aquatic food webs,” Estuaries 25 (4), 694–703 (2002).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.V. Sapozhnikov (Russian Federal Research Institute of Fisheries and Oceanography), A.V. Skriptsova (Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences), P.Ya. Tishchenko (Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences), and an anonymous reviewer for critical comments during preparation of the manuscript.

Funding

The study was carried out under the topic “Adaptation of Marine Autotrophic Organisms to Change in Climate and Anthropogenic Environmental Conditions: Physiological, Biochemical, and Ecological Aspects,” State registration no. 115 081 110 042, Federal Agency for Scientific Organizations no. 0268-2014-0012, 2015–2017, as well as with the financial support of the Vietnam Academy of Science and Technology, VAST-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Cherbadgy.

Additional information

Translated by E. Shvetsov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherbadgy, I.I., Propp, L.N. Content of Organic Carbon, Nitrogen, and Phosphorus in Deep-Water Coralline Algae Biocenoses, South China Sea. Oceanology 59, 514–522 (2019). https://doi.org/10.1134/S0001437019040015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437019040015

Keywords:

Navigation