Skip to main content

Advertisement

Log in

Characteristics of Growth and Fluorescence of Certain Types of Algae during Acclimation to Different Temperatures under Culture Conditions

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

The paper examines the temperature dependence of the specific growth rate and ratio of variable to maximum fluorescence (FV/FM) in a number of marine planktonic algae from collections of cultures. It determines the optimum growth temperatures (Topt), upper and lower limits of the tolerance zone, and in some cases, changes in the dynamics of these parameters outside the tolerance zone. Temperature characteristics of the species corresponded to the growth conditions of these species in a natural environment. Prolonged stress exposure to a low positive temperature (4–6°C) was reversible; recovery of the growth rate and FV/FM was observed immediately after the temperature increased. In diatoms, temperatures 2–3°C above the Topt for diatoms induced gradual degradation of the culture, which, depending on the duration of exposure, could lead to the death of algae. Springtime dinoflagellates exhibited higher temperature resistance and remained viable at temperatures 5–8°C above Topt with lower specific growth rates. The increasing portion of temperature dependence of the specific growth rate approximated a linear dependence; the regression coefficient is 0.08–0.13 for diatoms and 0.03–0.11 for dinoflagellates. The normalized values for this parameter (the relative value of change in the specific growth rate, %) was 5.3 ± 0.4 for diatoms and 6.4 ± 0.5 for dinoflagellates for 1°C of temperature change. Dinoflagellates exhibited larger values for the Q10 parameter. FV/FM for most species had high values in the entire range of temperatures at which the algae maintained a steady-state growth. A drop in this parameter outside the limits of the tolerance zone was associated with the temperature-induced inhibition of growth processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Yu. V. Bryantseva, “Specific seasonal succession of phytocenosises of the Sevastopol Bay in 2004–2006,” in Microalgae of the Black Sea: Conservation of Biological Diversity and Biotechnological Use, Ed. by Yu. N. Tokarev, (EKOSI-Gidrofizika, Sevastopol, 2008), pp. 18–23.

    Google Scholar 

  2. O. I. Koblents-Mishke, “Photosynthetic primary production,” in Biological Resources of the Ocean (Moscow, 1985), pp. 48–62.

  3. O. I. Koblents-Mishke, V. V. Volkovinskii, and Yu. G. Kabanova, “Plankton primary production in the World Ocean,” in The Program and Methods for the Study of Biogeocenosises of Aquatic Environment. Biogeocenosises of the Seas and Oceans (Nauka, Moscow, 1970), pp. 66–83.

    Google Scholar 

  4. D. N. Matorin and A. A. Alekseev, Role of Chlorophyll Fluorescence in Biodiagnostics of the Plants (Al’teks, Moscow, 2013) [in Russian].

    Google Scholar 

  5. V. A. Osipov, Candidate’s Dissertation in Biology (Moscow, 2006).

  6. M. I. Senicheva, “Species diversity, seasonal and interannual variability of microalgae in plankton near Crimean coasts,” in Microalgae of the Black Sea: Conservation of Biological Diversity and Biotechnological Use, Ed. by Yu. N. Tokarev, (EKOSI-Gidrofizika, Sevastopol, 2008), pp. 18–23.

    Google Scholar 

  7. N. Yu. Shoman and A. I. Akimov, “Influence of photoadaptation on specific growth rate and ratio of organic carbon to chlorophyll a in diatom algae Phaeodactylum tricornutum,” Morsk. Ekol. Zh. 12 (4), 97–103 (2013).

    Google Scholar 

  8. G. Ahlgren, “Temperature functions in biology and their application to algal growth constants,” Oikos 49 (2), 177–190 (1987).

    Article  Google Scholar 

  9. M. J. Ahrens and D. L. Ingram, “Heat tolerance of citrus leaves,” Hort. Sci. 23, 747–748 (1988).

    Google Scholar 

  10. A. Andersson, P. Haecky, and Å. Hagström, “Effect of temperature and light on the growth of micro-nano-and pico-plankton: impact on algal succession,” Mar. Biol. 120 (4), 511–520 (1994).

    Article  Google Scholar 

  11. T. K. Antal, P. S. Venediktov, D. N. Matorin, et al., “Measurement of phytoplankton photosynthesis rate using a pump-and-probe fluorometer,” Oceanologia 43 (3), 291–313 (2001).

    Google Scholar 

  12. J. A. Berges, D. E. Varela, and P. J. Harrison, “Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae),” Mar. Ecol.: Prog. Ser. 225, 139–146 (2002).

    Article  Google Scholar 

  13. I. C. Burke, W. K. Lauenroth, and W. J. Parton, “Regional and temporal variation in net primary production and nitrogen mineralization in grasslands,” Ecology 78 (5), 1330–1340 (1997).

    Article  Google Scholar 

  14. A. Chalifour and P. Juneau, “Temperature-dependent sensitivity of growth and photosynthesis of Scenedesmus obliquus, Navicula pelliculosa and two strains of Microcystis aeruginosa to the herbicide atrazine,” Aquat. Toxicol. 103 (1), 9–17 (2011).

    Article  Google Scholar 

  15. P. Claquin, I. Probert, S. Lefebvre, and B. Véron, “Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae,” Aquat. Microb. Ecol. 51 (1), 1–11 (2008).

    Article  Google Scholar 

  16. R. W. Eppley, “Temperature and phytoplankton growth in the sea,” Fish. Bull. 70 (4), 1063–1085 (1972).

    Google Scholar 

  17. M. W. Fawley, “Effects of light intensity and temperature interaction on growth characteristics of Phaeodactilum tricornutum (Bacillariophyceae),” J. Phycol. 20 (1), 67–72 (1984).

    Article  Google Scholar 

  18. G. E. Fogg and B. Thake, Algae Cultures and Phytoplankton Ecology (University of Wisconsin Press, Madison, WI, 1987).

    Google Scholar 

  19. R. J. Geider, J. Roche, R. M. Greene, and M. Olaizola, “Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation,” J. Phycol. 29 (6), 755–766 (1993).

    Article  Google Scholar 

  20. K. Hancke, T. B. Hancke, L. M. Olsen, et al., “Temperature effects on microalgal photosynthesis-light responses measured by O2 production pulse-amplitude-modulated fluorescence and 14C assimilation,” J. Phycol. 44 (2), 501–514 (2008).

    Article  Google Scholar 

  21. R. Iglesias-Prieto, J. L. Matta, W. A. Robins, and R. K. Trench, “Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture,” Proc. Natl. Acad. Sci. U.S.A. 89 (21), 10302–10305 (1992).

    Article  Google Scholar 

  22. P. A. Jumars, J. W. Deming, P. S. Hill, et al., “Physical constraints on marine osmotrophy in an optimal foraging context,” Aquat. Microb. Ecol. 7 (2), 121–159 (1993).

    Google Scholar 

  23. Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr. 38 (8), 1646–1665 (1993).

    Article  Google Scholar 

  24. G. Kulk, P. de Vries, W. H. van de Poll, et al., “Temperature-dependent growth and photophysiology of prokaryotic and eukaryotic oceanic picophyto-plankton,” Mar. Ecol.: Prog. Ser. 466, 43 (2012).

    Article  Google Scholar 

  25. S. Lippemeier, R. Hintze, K. Vanselow, et al., “In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis,” Eur. J. Phycol. 36 (1), 89–100 (2001).

    Article  Google Scholar 

  26. D. P. Maxwell, S. Falk, C. G. Trick, and N. P. Huner, “Growth at low temperature mimics high-light acclimation in Chlorella vulgaris,” Plant Physiol. 105 (2), 535–543 (1994).

    Article  Google Scholar 

  27. R. K. Mishra and G. S. Singhal, “Function of photosynthetic apparatus of intact wheat leaves under high light and heat stress and its relationship with peroxidation of thylakoid lipids,” Plant Physiol. 98 (1), 1–6 (1992).

    Article  Google Scholar 

  28. J. R. Moisan, T. A. Moisan, and M. R. Abbott, “Modeling the effect of temperature on the maximum growth rates of phytoplankton populations,” Ecol. Model. 153 (3). P (197–215 (2002).

  29. D. J. Montagnes, S. A. Kimmance, and D. Atkinson, “Using Q ~ 1 ~ 0: Can growth rates increase linearly with temperature?” Aquat. Microb. Ecol. 32 (3), 307–313 (2003).

    Article  Google Scholar 

  30. E. P. Morris and J. C. Kromkamp, “Influence of temperature on the relationship between oxygen-and fluorescence-based estimates of photosynthetic parameters in a marine benthic diatom (Cylindrotheca closterium),” Eur. J. Phycol. 38 (2), 133–142 (2003).

    Article  Google Scholar 

  31. M. F. Piehler, L. J. Twomey, N. S. Hall, and H.  W. Paerl, “Impacts of inorganic nutrient enrichment on phytoplankton community structure and function in Pamlico Sound, NC, USA,” Estuarine, Coastal Shelf Sci. 61 (2), 197–209 (2004).

    Article  Google Scholar 

  32. P. J. Quinn, “Effects of temperature on cell membranes,” Symp. Soc. Exp. Biol. 42, 237–258 (1988).

    Google Scholar 

  33. P. J. Quinn and W. P. Williams, “The structural role of lipids in photosynthetic membranes,” Biochim. Biophys. Acta, Rev. Biomembr. 737 (2), 223–266 (1983).

    Google Scholar 

  34. C. S. Reynolds, “Phytoplankton periodicity: the interactions of form, function and environmental variability,” Freshwater Biol. 14 (2), 111–142 (1984).

    Article  Google Scholar 

  35. T. L. Richardson, C. E. Gibson, and S. I. Heaney, “Temperature, growth and seasonal succession of phytoplankton in Lake Baikal, Siberia,” Freshwater Biol. 44 (3), 431–440 (2000).

    Article  Google Scholar 

  36. O. Schofield, J. Grzymski, M. M. Moline, and R. V. Jovine, “Impact of temperature acclimation on photosynthesis in the toxic red-tide dinoflagellate Alexandrium fundyense (Ca28),” J. Plankton Res. 20 (7), 1241–1258 (1998).

    Article  Google Scholar 

  37. Y. Suzuki and M. Takahashi, “Growth responses of several diatom species isolated from various environments to temperature,” J. Phycol. 31 (6), 880–888 (1995).

    Article  Google Scholar 

  38. D. Tilman, R. Kiesling, R. Sterner, et al., “Green, bluegreen and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen,” Arch. Hydrobiol. 106 (4), 473–485 (1986).

    Google Scholar 

  39. P. G. Verity, “Effects of temperature, irradiance, and daylength on the marine diatom Leptocylindrus danicus Cleve. IV. Growth,” J. Exp. Mar. Biol. Ecol. 60 (2), 209–222 (1982).

    Article  Google Scholar 

  40. P. A. Wheeler, “Phytoplankton nitrogen metabolism,” in Nitrogen in the Marine Environment (Elsevier, Amsterdam, 1983), pp. 309–346.

    Google Scholar 

  41. M. Zhang, Y. Yu, Z. Yang, and F. Kong, “Photochemical responses of phytoplankton to rapid increasing temperature process,” Phycol. Res. 60 (3), 199–207 (2012).

    Article  Google Scholar 

  42. M. Zhao, L. Lei, and B. Han, “Seasonal change in phytoplankton communities in Tangxi reservoir and the effecting factors,” J. Trop. Subtrop. Bot. 13 (5), 386–392 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Solomonova.

Additional information

Translated by E. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimov, A.I., Solomonova, E.S. Characteristics of Growth and Fluorescence of Certain Types of Algae during Acclimation to Different Temperatures under Culture Conditions. Oceanology 59, 316–326 (2019). https://doi.org/10.1134/S0001437019030019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437019030019

Navigation